Biochemical and structural studies on native and recombinant Glycine max UreG: a detailed characterization of a plant urease accessory protein

Biochemical and structural studies on native and recombinant Glycine max UreG: a detailed... Urea is the nitrogen fertilizer most utilized in crop production worldwide. Understanding all factors involved in urea metabolism in plants is an essential step towards assessing and possibly improving the use of urea by plants. Urease, the enzyme responsible for urea hydrolysis, and its accessory proteins, necessary for nickel incorporation into the enzyme active site and concomitant activation, have been extensively characterized in bacteria. In contrast, little is known about their plant counterparts. This work reports a detailed characterization of Glycine max UreG (GmUreG), a urease accessory protein. Two forms of native GmUreG, purified from seeds, were separated by metal affinity chromatography, and their properties (GTPase activity in absence and presence of Ni2+ or Zn2+, secondary structure and metal content) were compared with the recombinant protein produced in Escherichia coli. The binding affinity of recombinant GmUreG (rGmUreG) for Ni2+ and Zn2+ was determined by isothermal titration calorimetry. rGmUreG binds Zn2+ or Ni2+ differently, presenting a very tight binding site for Zn2+ (K d = 0.02 ± 0.01 μM) but not for Ni2+, thus suggesting that Zn2+ may play a role on the plant urease assembly process, as suggested for bacteria. Size exclusion chromatography showed that Zn2+ stabilizes a dimeric form of the rGmUreG, while NMR measurements indicate that rGmUreG belongs to the class of intrinsically disordered proteins. A homology model for the fully folded GmUreG was built and compared to bacterial UreG models, and the possible sites of interaction with other accessory proteins were investigated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Biochemical and structural studies on native and recombinant Glycine max UreG: a detailed characterization of a plant urease accessory protein

Loading next page...
 
/lp/springer_journal/biochemical-and-structural-studies-on-native-and-recombinant-glycine-4Txv8xFYX0
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Plant Sciences; Biochemistry, general
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9878-1
Publisher site
See Article on Publisher Site

Abstract

Urea is the nitrogen fertilizer most utilized in crop production worldwide. Understanding all factors involved in urea metabolism in plants is an essential step towards assessing and possibly improving the use of urea by plants. Urease, the enzyme responsible for urea hydrolysis, and its accessory proteins, necessary for nickel incorporation into the enzyme active site and concomitant activation, have been extensively characterized in bacteria. In contrast, little is known about their plant counterparts. This work reports a detailed characterization of Glycine max UreG (GmUreG), a urease accessory protein. Two forms of native GmUreG, purified from seeds, were separated by metal affinity chromatography, and their properties (GTPase activity in absence and presence of Ni2+ or Zn2+, secondary structure and metal content) were compared with the recombinant protein produced in Escherichia coli. The binding affinity of recombinant GmUreG (rGmUreG) for Ni2+ and Zn2+ was determined by isothermal titration calorimetry. rGmUreG binds Zn2+ or Ni2+ differently, presenting a very tight binding site for Zn2+ (K d = 0.02 ± 0.01 μM) but not for Ni2+, thus suggesting that Zn2+ may play a role on the plant urease assembly process, as suggested for bacteria. Size exclusion chromatography showed that Zn2+ stabilizes a dimeric form of the rGmUreG, while NMR measurements indicate that rGmUreG belongs to the class of intrinsically disordered proteins. A homology model for the fully folded GmUreG was built and compared to bacterial UreG models, and the possible sites of interaction with other accessory proteins were investigated.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 22, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off