Biochemical and physiological responses of Brassica napus plants to humic acid under water stress

Biochemical and physiological responses of Brassica napus plants to humic acid under water stress This study examines the effects of humic acid (HA, control, 3 and 6 mg/L) on some biochemical and physiological parameters of rapeseed (Brassica napus L.) plants under different water supply conditions (60, 100, and 140 mm evaporation from class A pan). Water stress decreased chlorophyll a (Chl a) and total chlorophyll (ChlT) content in plants but proline content partly increased with increasing water stress severity. Plants treated by HA had more Chl a and ChlT content under both well and limited water conditions. Application of HA improved the PSII and peroxidase activity of rapeseed plants under all irrigation treatments. Ascorbate peroxidase activity under severe water stress condition increased by 70 and 95%, compared with that under moderate and well watering conditions, respectively. Catalase activity was 51 and 69% less under well watering than that of moderate and severe water stress conditions, respectively. The highest activity of ascorbate peroxidase was recorded in plants treated by 6 mg/L HA. HA-treated plants had 42, 8.5, and 15% more soluble protein content under well watering, moderate and severe water stress conditions, respectively, compared with control plants. Malondialdehyde increased with increasing the severity of water stress, in contrast, application of HA significantly reduced the amount of this trait under water stress conditions. It was shown that application of HA increased the activity of antioxidant enzymes, improved PSII activity and consequently decreased lipid peroxidation in rapeseed plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Biochemical and physiological responses of Brassica napus plants to humic acid under water stress

Loading next page...
 
/lp/springer_journal/biochemical-and-physiological-responses-of-brassica-napus-plants-to-WcYPiI6TGh
Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715040123
Publisher site
See Article on Publisher Site

Abstract

This study examines the effects of humic acid (HA, control, 3 and 6 mg/L) on some biochemical and physiological parameters of rapeseed (Brassica napus L.) plants under different water supply conditions (60, 100, and 140 mm evaporation from class A pan). Water stress decreased chlorophyll a (Chl a) and total chlorophyll (ChlT) content in plants but proline content partly increased with increasing water stress severity. Plants treated by HA had more Chl a and ChlT content under both well and limited water conditions. Application of HA improved the PSII and peroxidase activity of rapeseed plants under all irrigation treatments. Ascorbate peroxidase activity under severe water stress condition increased by 70 and 95%, compared with that under moderate and well watering conditions, respectively. Catalase activity was 51 and 69% less under well watering than that of moderate and severe water stress conditions, respectively. The highest activity of ascorbate peroxidase was recorded in plants treated by 6 mg/L HA. HA-treated plants had 42, 8.5, and 15% more soluble protein content under well watering, moderate and severe water stress conditions, respectively, compared with control plants. Malondialdehyde increased with increasing the severity of water stress, in contrast, application of HA significantly reduced the amount of this trait under water stress conditions. It was shown that application of HA increased the activity of antioxidant enzymes, improved PSII activity and consequently decreased lipid peroxidation in rapeseed plants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 17, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off