Bioassay and bioactivity of polymer as carrier for some active compounds such as anticancer drugs

Bioassay and bioactivity of polymer as carrier for some active compounds such as anticancer drugs The present work deals with the development of a new slow release polymeric material, based on maize starch/cellulose acetate blend polymerized with acrylic acid monomer by free-radical mechanism. The polymerization was initiated by a redox system. The synthesized polymeric material may be used as a carrier for some active compounds such as anticancer drugs and has been characterized by Fourier transform spectroscopy. The active compounds are a new series of heterocyclic derivatives that had an anticancer effect and were prepared from pyrimidine and coumarin compounds, namely: 7-(2-methoxyphenyl)-5-thioxo-5,6-dihydro[1,2,4]triazolo[4,3-c] pyrimidine-8-carbonitrile (compound I), 8-(2-methoxyphenyl)-3,4-dioxo-6-thioxo-3,4,6,7-tetrahydro-2h-pyrimido[6,1-c]-[1,2,4]triazine-9-carbonitrile (compound II), and 4-substituted-1-(1-(7-methoxy-4-methyl-coumarin-8-yl) ethylidene) thiosemi-carbazide (compound III). They were incorporated into the prepared polymer matrix. The polymer-carried drug was tested for slow release drug delivery through testing it in aqueous media for different time periods and examining it as an anti-proliferative agent against human liver cancer cell line (HEPG2). The release rate of the drug was evaluated in aqueous media at different pHs as well as in dimethyl formamide which is the good solvent of such drugs. The release was measured spectrophotometrically. It was found that the release rate depends on the pH of the aqueous media. The release of the drug in the alkaline media was found to be high compared with other media. Also, the sustained release of the drug was extended to about 20 days. The activity of the released drug against human liver cancer cell line was tested. The results showed that compound (III) gave the highest growth inhibition activity followed by compound (II), while compound (I) indicated the lowest activity against the human liver (HEPG2) cancer cell line. Research on Chemical Intermediates Springer Journals

Bioassay and bioactivity of polymer as carrier for some active compounds such as anticancer drugs

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial