Bioassay and bioactivity of polymer as carrier for some active compounds such as anticancer drugs

Bioassay and bioactivity of polymer as carrier for some active compounds such as anticancer drugs The present work deals with the development of a new slow release polymeric material, based on maize starch/cellulose acetate blend polymerized with acrylic acid monomer by free-radical mechanism. The polymerization was initiated by a redox system. The synthesized polymeric material may be used as a carrier for some active compounds such as anticancer drugs and has been characterized by Fourier transform spectroscopy. The active compounds are a new series of heterocyclic derivatives that had an anticancer effect and were prepared from pyrimidine and coumarin compounds, namely: 7-(2-methoxyphenyl)-5-thioxo-5,6-dihydro[1,2,4]triazolo[4,3-c] pyrimidine-8-carbonitrile (compound I), 8-(2-methoxyphenyl)-3,4-dioxo-6-thioxo-3,4,6,7-tetrahydro-2h-pyrimido[6,1-c]-[1,2,4]triazine-9-carbonitrile (compound II), and 4-substituted-1-(1-(7-methoxy-4-methyl-coumarin-8-yl) ethylidene) thiosemi-carbazide (compound III). They were incorporated into the prepared polymer matrix. The polymer-carried drug was tested for slow release drug delivery through testing it in aqueous media for different time periods and examining it as an anti-proliferative agent against human liver cancer cell line (HEPG2). The release rate of the drug was evaluated in aqueous media at different pHs as well as in dimethyl formamide which is the good solvent of such drugs. The release was measured spectrophotometrically. It was found that the release rate depends on the pH of the aqueous media. The release of the drug in the alkaline media was found to be high compared with other media. Also, the sustained release of the drug was extended to about 20 days. The activity of the released drug against human liver cancer cell line was tested. The results showed that compound (III) gave the highest growth inhibition activity followed by compound (II), while compound (I) indicated the lowest activity against the human liver (HEPG2) cancer cell line. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Bioassay and bioactivity of polymer as carrier for some active compounds such as anticancer drugs

Loading next page...
 
/lp/springer_journal/bioassay-and-bioactivity-of-polymer-as-carrier-for-some-active-FKsSkPUmCA
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0999-6
Publisher site
See Article on Publisher Site

Abstract

The present work deals with the development of a new slow release polymeric material, based on maize starch/cellulose acetate blend polymerized with acrylic acid monomer by free-radical mechanism. The polymerization was initiated by a redox system. The synthesized polymeric material may be used as a carrier for some active compounds such as anticancer drugs and has been characterized by Fourier transform spectroscopy. The active compounds are a new series of heterocyclic derivatives that had an anticancer effect and were prepared from pyrimidine and coumarin compounds, namely: 7-(2-methoxyphenyl)-5-thioxo-5,6-dihydro[1,2,4]triazolo[4,3-c] pyrimidine-8-carbonitrile (compound I), 8-(2-methoxyphenyl)-3,4-dioxo-6-thioxo-3,4,6,7-tetrahydro-2h-pyrimido[6,1-c]-[1,2,4]triazine-9-carbonitrile (compound II), and 4-substituted-1-(1-(7-methoxy-4-methyl-coumarin-8-yl) ethylidene) thiosemi-carbazide (compound III). They were incorporated into the prepared polymer matrix. The polymer-carried drug was tested for slow release drug delivery through testing it in aqueous media for different time periods and examining it as an anti-proliferative agent against human liver cancer cell line (HEPG2). The release rate of the drug was evaluated in aqueous media at different pHs as well as in dimethyl formamide which is the good solvent of such drugs. The release was measured spectrophotometrically. It was found that the release rate depends on the pH of the aqueous media. The release of the drug in the alkaline media was found to be high compared with other media. Also, the sustained release of the drug was extended to about 20 days. The activity of the released drug against human liver cancer cell line was tested. The results showed that compound (III) gave the highest growth inhibition activity followed by compound (II), while compound (I) indicated the lowest activity against the human liver (HEPG2) cancer cell line.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 9, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off