Binding of cell type-specific nuclear proteins to the 5′-flanking region of maize C4 phosphoenolpyruvate carboxylase gene confers its differential transcription in mesophyll cells

Binding of cell type-specific nuclear proteins to the 5′-flanking region of maize C4... C4-type phosphenolpyruvate carboxylase (C4PEPC) acts as a primary carbon assimilatory enzyme in the C4 photosynthetic pathway. The maize C4PEPC gene (C4Ppc1) is specifically expressed in mesophyll cells (MC) of light-grown leaves, but the molecular mechanism responsible for its cell type-specific expression has not been characterized. In this study, we introduced a chimeric maize C4Ppc1 5′-flanking region/β-glucuronidase (GUS) gene into maize plants by Agrobacterium-mediated transformation. Activity assay and histochemical staining showed that GUS is almost exclusively localized in leaf MC of transgenic maize plants. This observation suggests that the introduced 5′ region of maize C4Ppc1 contains the necessary cis element(s) for its specific expression in MC. Next, we investigated whether the 5′ region of the maize gene interacts with nuclear proteins in a cell type-specific manner. By gel shift assays with nuclear extracts prepared from MC or bundle sheath cells (BSC), cell type-specific DNA-protein interactions were detected: nuclear factors PEPIb and PEPIc are specific to MC whereas PEPIa and PEPIIa are specific to BSC. Light alters the binding activity of these factors. These interactions were not detected in the assay with nuclear extract prepared from root, or competed out by oligonucleotides corresponding to the binding sites for the maize nuclear protein, PEP-I, which is known to bind specifically to the promoter region of C4Ppc1. The results suggest that novel cell type-specific positive and negative nuclear factors bind to the maize C4Ppc1 5′-flanking region and regulate its differential transcription in MC in a light-dependent manner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Binding of cell type-specific nuclear proteins to the 5′-flanking region of maize C4 phosphoenolpyruvate carboxylase gene confers its differential transcription in mesophyll cells

Loading next page...
 
/lp/springer_journal/binding-of-cell-type-specific-nuclear-proteins-to-the-5-flanking-xYwtDvlfAZ
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1026565027772
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial