Binding of cell type-specific nuclear proteins to the 5′-flanking region of maize C4 phosphoenolpyruvate carboxylase gene confers its differential transcription in mesophyll cells

Binding of cell type-specific nuclear proteins to the 5′-flanking region of maize C4... C4-type phosphenolpyruvate carboxylase (C4PEPC) acts as a primary carbon assimilatory enzyme in the C4 photosynthetic pathway. The maize C4PEPC gene (C4Ppc1) is specifically expressed in mesophyll cells (MC) of light-grown leaves, but the molecular mechanism responsible for its cell type-specific expression has not been characterized. In this study, we introduced a chimeric maize C4Ppc1 5′-flanking region/β-glucuronidase (GUS) gene into maize plants by Agrobacterium-mediated transformation. Activity assay and histochemical staining showed that GUS is almost exclusively localized in leaf MC of transgenic maize plants. This observation suggests that the introduced 5′ region of maize C4Ppc1 contains the necessary cis element(s) for its specific expression in MC. Next, we investigated whether the 5′ region of the maize gene interacts with nuclear proteins in a cell type-specific manner. By gel shift assays with nuclear extracts prepared from MC or bundle sheath cells (BSC), cell type-specific DNA-protein interactions were detected: nuclear factors PEPIb and PEPIc are specific to MC whereas PEPIa and PEPIIa are specific to BSC. Light alters the binding activity of these factors. These interactions were not detected in the assay with nuclear extract prepared from root, or competed out by oligonucleotides corresponding to the binding sites for the maize nuclear protein, PEP-I, which is known to bind specifically to the promoter region of C4Ppc1. The results suggest that novel cell type-specific positive and negative nuclear factors bind to the maize C4Ppc1 5′-flanking region and regulate its differential transcription in MC in a light-dependent manner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Binding of cell type-specific nuclear proteins to the 5′-flanking region of maize C4 phosphoenolpyruvate carboxylase gene confers its differential transcription in mesophyll cells

Loading next page...
 
/lp/springer_journal/binding-of-cell-type-specific-nuclear-proteins-to-the-5-flanking-xYwtDvlfAZ
Publisher
Springer Journals
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1026565027772
Publisher site
See Article on Publisher Site

Abstract

C4-type phosphenolpyruvate carboxylase (C4PEPC) acts as a primary carbon assimilatory enzyme in the C4 photosynthetic pathway. The maize C4PEPC gene (C4Ppc1) is specifically expressed in mesophyll cells (MC) of light-grown leaves, but the molecular mechanism responsible for its cell type-specific expression has not been characterized. In this study, we introduced a chimeric maize C4Ppc1 5′-flanking region/β-glucuronidase (GUS) gene into maize plants by Agrobacterium-mediated transformation. Activity assay and histochemical staining showed that GUS is almost exclusively localized in leaf MC of transgenic maize plants. This observation suggests that the introduced 5′ region of maize C4Ppc1 contains the necessary cis element(s) for its specific expression in MC. Next, we investigated whether the 5′ region of the maize gene interacts with nuclear proteins in a cell type-specific manner. By gel shift assays with nuclear extracts prepared from MC or bundle sheath cells (BSC), cell type-specific DNA-protein interactions were detected: nuclear factors PEPIb and PEPIc are specific to MC whereas PEPIa and PEPIIa are specific to BSC. Light alters the binding activity of these factors. These interactions were not detected in the assay with nuclear extract prepared from root, or competed out by oligonucleotides corresponding to the binding sites for the maize nuclear protein, PEP-I, which is known to bind specifically to the promoter region of C4Ppc1. The results suggest that novel cell type-specific positive and negative nuclear factors bind to the maize C4Ppc1 5′-flanking region and regulate its differential transcription in MC in a light-dependent manner.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off