Bimetallic Co–Cu polyaniline composites: Structure and electrocatalytic activity

Bimetallic Co–Cu polyaniline composites: Structure and electrocatalytic activity Bimetallic Co–Cu polyaniline composites were produced by oxidative polymerization of aniline, with ammonium peroxydisulfate and hydrogen peroxide as oxidizing agents. Co(II) and Cu(II) chlorides were introduced into the polymer by the in situ method. It was found that the phase constitution of the composites is affected by their synthesis conditions and content of both metals in them. The electrocatalytic activity of the composites in the electrohydrogenation of p-nitroaniline in an aqueous-alcoholic-alkaline medium of the catholyte was studied and found to exceed that of composites synthesized with the use of H2O2 and evaporation of the solvent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Bimetallic Co–Cu polyaniline composites: Structure and electrocatalytic activity

Loading next page...
 
/lp/springer_journal/bimetallic-co-cu-polyaniline-composites-structure-and-electrocatalytic-uK0dARNvRI
Publisher
Springer Journals
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216070053
Publisher site
See Article on Publisher Site

Abstract

Bimetallic Co–Cu polyaniline composites were produced by oxidative polymerization of aniline, with ammonium peroxydisulfate and hydrogen peroxide as oxidizing agents. Co(II) and Cu(II) chlorides were introduced into the polymer by the in situ method. It was found that the phase constitution of the composites is affected by their synthesis conditions and content of both metals in them. The electrocatalytic activity of the composites in the electrohydrogenation of p-nitroaniline in an aqueous-alcoholic-alkaline medium of the catholyte was studied and found to exceed that of composites synthesized with the use of H2O2 and evaporation of the solvent.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Oct 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off