Bilge keel–free surface interaction and vortex shedding effect on roll damping

Bilge keel–free surface interaction and vortex shedding effect on roll damping Prediction of the roll damping of a ship with bilge keels using traditional techniques, such as Ikeda’s method, is no longer sufficient when the bilge keels interact with the free surface. The discrepancies occurring between this method and actual roll damping are due to free surface interaction and vortex shedding, which are not considered in this method. Reynolds-averaged Navier–Stokes (RANS) solvers can be used to capture these effects, and the widely used Ikeda’s method can be modified. In this study, two-dimensional (2D) roll damping calculations for a hull section with bilge keels, including the free surface effects, are calculated numerically and experimentally for different draft cases. The normal forces acting on the bilge keels are calculated numerically to show the free surface effect on bilge keel roll damping. The generated vortices and vortex shedding from the bilge keels are analyzed to investigate the effect of the bilge keels–free surface interaction on the roll damping coefficients. The results show that the RANS solver is capable of predicting the roll damping coefficients in good agreement with experimental results and can be further used to modify Ikeda’s method. It is concluded that the bilge keel forces decrease when the bilge keels interact with the free surface, whereas Ikeda’s method gives a constant value for each draft condition. The interaction of the bilge keels and free surface affects the generation of the vorticity and vortex shedding from the bilge keels. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Marine Science and Technology Springer Journals

Bilge keel–free surface interaction and vortex shedding effect on roll damping

Loading next page...
 
/lp/springer_journal/bilge-keel-free-surface-interaction-and-vortex-shedding-effect-on-roll-07GFhZQhOD
Publisher
Springer Japan
Copyright
Copyright © 2016 by JASNAOE
Subject
Engineering; Automotive Engineering; Engineering Fluid Dynamics; Engineering Design; Offshore Engineering; Mechanical Engineering
ISSN
0948-4280
eISSN
1437-8213
D.O.I.
10.1007/s00773-016-0423-9
Publisher site
See Article on Publisher Site

Abstract

Prediction of the roll damping of a ship with bilge keels using traditional techniques, such as Ikeda’s method, is no longer sufficient when the bilge keels interact with the free surface. The discrepancies occurring between this method and actual roll damping are due to free surface interaction and vortex shedding, which are not considered in this method. Reynolds-averaged Navier–Stokes (RANS) solvers can be used to capture these effects, and the widely used Ikeda’s method can be modified. In this study, two-dimensional (2D) roll damping calculations for a hull section with bilge keels, including the free surface effects, are calculated numerically and experimentally for different draft cases. The normal forces acting on the bilge keels are calculated numerically to show the free surface effect on bilge keel roll damping. The generated vortices and vortex shedding from the bilge keels are analyzed to investigate the effect of the bilge keels–free surface interaction on the roll damping coefficients. The results show that the RANS solver is capable of predicting the roll damping coefficients in good agreement with experimental results and can be further used to modify Ikeda’s method. It is concluded that the bilge keel forces decrease when the bilge keels interact with the free surface, whereas Ikeda’s method gives a constant value for each draft condition. The interaction of the bilge keels and free surface affects the generation of the vorticity and vortex shedding from the bilge keels.

Journal

Journal of Marine Science and TechnologySpringer Journals

Published: Dec 3, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off