Big Data in Experimental Mechanics and Model Order Reduction: Today’s Challenges and Tomorrow’s Opportunities

Big Data in Experimental Mechanics and Model Order Reduction: Today’s Challenges and... Since the turn of the century experimental solid mechanics has undergone major changes with the generalized use of images. The number of acquired data has literally exploded and one of today’s challenges is related to the saturation of mining procedures through such big data sets. With respect to digital image/volume correlation one of tomorrow’s pathways is to better control and master this data flow with procedures that are optimized for extracting the sought information with minimum uncertainties and maximum robustness. In this paper emphasis is put on various hierarchical identification procedures. Based on such structures a posteriori model/data reductions are performed in order to ease and make the exploitation of the experimental information far more efficient. Some possibilities related to other model order reduction techniques like the proper generalized decomposition are discussed and new opportunities are sketched. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Computational Methods in Engineering Springer Journals

Big Data in Experimental Mechanics and Model Order Reduction: Today’s Challenges and Tomorrow’s Opportunities

Loading next page...
 
/lp/springer_journal/big-data-in-experimental-mechanics-and-model-order-reduction-today-s-oVpGE3eXpk
Publisher
Springer Journals
Copyright
Copyright © 2017 by CIMNE, Barcelona, Spain
Subject
Engineering; Mathematical and Computational Engineering
ISSN
1134-3060
eISSN
1886-1784
D.O.I.
10.1007/s11831-017-9234-3
Publisher site
See Article on Publisher Site

Abstract

Since the turn of the century experimental solid mechanics has undergone major changes with the generalized use of images. The number of acquired data has literally exploded and one of today’s challenges is related to the saturation of mining procedures through such big data sets. With respect to digital image/volume correlation one of tomorrow’s pathways is to better control and master this data flow with procedures that are optimized for extracting the sought information with minimum uncertainties and maximum robustness. In this paper emphasis is put on various hierarchical identification procedures. Based on such structures a posteriori model/data reductions are performed in order to ease and make the exploitation of the experimental information far more efficient. Some possibilities related to other model order reduction techniques like the proper generalized decomposition are discussed and new opportunities are sketched.

Journal

Archives of Computational Methods in EngineeringSpringer Journals

Published: Jul 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off