Bifurcations in the Generalized Korteweg–de Vries Equation

Bifurcations in the Generalized Korteweg–de Vries Equation We study the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with periodic in the spatial variable boundary conditions. For various values of parameters, in a sufficiently small neighborhood of the zero equilibrium state we construct asymptotics of periodic solutions and invariant tori. Separately we consider the case when the stability spectrum of the zero solution contains a countable number of roots of the characteristic equation. In this case we state a special nonlinear boundary-value problem which plays the role of a normal form and determines the dynamics of the initial problem. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Mathematics Springer Journals

Bifurcations in the Generalized Korteweg–de Vries Equation

Loading next page...
 
/lp/springer_journal/bifurcations-in-the-generalized-korteweg-de-vries-equation-bkEQDnZeoc
Publisher
Springer Journals
Copyright
Copyright © 2018 by Allerton Press, Inc.
Subject
Mathematics; Mathematics, general
ISSN
1066-369X
eISSN
1934-810X
D.O.I.
10.3103/S1066369X18020068
Publisher site
See Article on Publisher Site

Abstract

We study the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with periodic in the spatial variable boundary conditions. For various values of parameters, in a sufficiently small neighborhood of the zero equilibrium state we construct asymptotics of periodic solutions and invariant tori. Separately we consider the case when the stability spectrum of the zero solution contains a countable number of roots of the characteristic equation. In this case we state a special nonlinear boundary-value problem which plays the role of a normal form and determines the dynamics of the initial problem.

Journal

Russian MathematicsSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off