Bidirectional Transepithelial Water Transport: Chloride-Dependent Mechanisms

Bidirectional Transepithelial Water Transport: Chloride-Dependent Mechanisms We hypothesized that inhibition and activation of basolateral to luminal chloride transport mechanisms were associated with respective decreases and increases in basolateral to luminal water fluxes. The luminal to basolateral (J W L→B ) and basolateral to luminal (J W B→L ) water fluxes across ovine tracheal epithelia were measured simultaneously. The mean J W L→B (6.5 μl/min/cm2) was larger than J W B→L (6.1 μl/min/cm2). Furosemide reduced J W B→L from 6.0 to 5.6 μl/min/cm2. Diphenylamine-2-carboxylate (DPC) reduced J W B→L from 7.9 to 7.3 μl/min/cm2 and reduced the membrane potential difference by 38%. Furosemide together with DPC decreased J W L→B by 30% and J W B→L by 15%. Norepinephrine increased J W B→L from 4.9 to 6.0 μl/min/cm2. Neuropeptide Y in the presence of norepinephrine decreased J W L→B (6.4 to 5.2 μl/min/cm2) and returned J W B→L to its baseline value. Vasopressin increased J W B→L from 4.1 to 5.1 μl/min/cm2. Endothelin-1 induced a simultaneous increase in J W B→L (7.0 to 7.7 μl/min/cm2) and decrease in J W L→B (7.4 to 6.4 μl/min/cm2); and decreased the membrane resistance. These data indicate that in tracheal epithelia under homeostatic conditions J W B→L has a ∼15% actively coupled component. Consistent with our hypothesis, inhibition and receptor-induced stimulation of chloride effluxes were associated with decreases and increases in J W B→L , respectively. However, as inhibition of transcellular chloride transport always decreased J W L→B more than J W B→L , reducing transepithelial chloride transport did not result in less water being transported into the airway lumen. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Bidirectional Transepithelial Water Transport: Chloride-Dependent Mechanisms

Loading next page...
 
/lp/springer_journal/bidirectional-transepithelial-water-transport-chloride-dependent-v7fzdACR2c
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232001069
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial