Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments

Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments A theoretical scheme is proposed to implement bidirectional quantum controlled teleportation (BQCT) by using a nine-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary two-qubit state called qubits $$A_1$$ A 1 and $$A_2$$ A 2 to Bob; and at the same time, Bob may also transmit an arbitrary two-qubit state called qubits $$B_1$$ B 1 and $$B_2$$ B 2 to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional quantum controlled teleportation protocol works. And we show this bidirectional quantum controlled teleportation scheme may be determinate and secure. Taking the amplitude-damping noise and the phase-damping noise as typical noisy channels, we analytically derive the fidelities of the BQCT process and show that the fidelities in these two cases only depend on the amplitude parameter of the initial state and the decoherence noisy rate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments

Loading next page...
 
/lp/springer_journal/bidirectional-controlled-teleportation-by-using-nine-qubit-entangled-YpgA3MDV0W
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1194-7
Publisher site
See Article on Publisher Site

Abstract

A theoretical scheme is proposed to implement bidirectional quantum controlled teleportation (BQCT) by using a nine-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary two-qubit state called qubits $$A_1$$ A 1 and $$A_2$$ A 2 to Bob; and at the same time, Bob may also transmit an arbitrary two-qubit state called qubits $$B_1$$ B 1 and $$B_2$$ B 2 to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional quantum controlled teleportation protocol works. And we show this bidirectional quantum controlled teleportation scheme may be determinate and secure. Taking the amplitude-damping noise and the phase-damping noise as typical noisy channels, we analytically derive the fidelities of the BQCT process and show that the fidelities in these two cases only depend on the amplitude parameter of the initial state and the decoherence noisy rate.

Journal

Quantum Information ProcessingSpringer Journals

Published: Nov 26, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off