Benzonitrile and its van der waals complexes studied in a free jet. III. Enhancement of the intersystem crossing rate in the benzonitrile dimer and other complexes

Benzonitrile and its van der waals complexes studied in a free jet. III. Enhancement of the... By using the sensitized phosphorescence spectroscopy, the intensity of the phosphorescence has been recorded upon excitation of the benzonitrile dimer to the S1 vibronic states in a free jet. The results indicate that the strong vibrational energy dependence of the fluorescence quantum yield, reported previously, is attributable to the increasing rate of intersystem crossing with increasing vibrational energy. Similar behavior is also observed in other van der Waals complexes of benzonitrile though the increase is less obvious. The enhancement of the intersystem crossing can be correlated with the state density of van der Waals modes in the S1 electronic state. In case of the benzonitrile trimer and benzonitrile-Kr complex, intersystem crossing is found to be fully efficient even without vibrational excitation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Benzonitrile and its van der waals complexes studied in a free jet. III. Enhancement of the intersystem crossing rate in the benzonitrile dimer and other complexes

Loading next page...
 
/lp/springer_journal/benzonitrile-and-its-van-der-waals-complexes-studied-in-a-free-jet-iii-ytu7of6eRL
Publisher
Springer Netherlands
Copyright
Copyright © 1998 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/156856798X00410
Publisher site
See Article on Publisher Site

Abstract

By using the sensitized phosphorescence spectroscopy, the intensity of the phosphorescence has been recorded upon excitation of the benzonitrile dimer to the S1 vibronic states in a free jet. The results indicate that the strong vibrational energy dependence of the fluorescence quantum yield, reported previously, is attributable to the increasing rate of intersystem crossing with increasing vibrational energy. Similar behavior is also observed in other van der Waals complexes of benzonitrile though the increase is less obvious. The enhancement of the intersystem crossing can be correlated with the state density of van der Waals modes in the S1 electronic state. In case of the benzonitrile trimer and benzonitrile-Kr complex, intersystem crossing is found to be fully efficient even without vibrational excitation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off