Benzodiazepine-Mediated Structural Changes in the Multidrug Transporter P-Glycoprotein: An Intrinsic Fluorescence Quenching Analysis

Benzodiazepine-Mediated Structural Changes in the Multidrug Transporter P-Glycoprotein: An... P-glycoprotein expressed in Pichia pastoris was used to study the drug binding sites of different benzodiazepines. The effect of bromazepam, chlordiazepoxide, diazepam and flurazepam on P-glycoprotein structure was investigated by measuring the intrinsic fluorescence of the transporter tryptophan residues. Purified mouse mdr1a transporter in mixed micelles of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid and 1,2-dimiristoyl-sn-glycerol-3-phosphocholine emitted fluorescence at 340 nm indicative of the fluorophores in a relatively apolar environment. Acrylamide and iodide ion were used as collisional quenchers toward distinct regions of the transporter, the protein and the interface protein-surface, respectively. Binding of ATP induced conformational changes at the protein surface level in accordance with the location of the nucleotide binding sites. Bromazepam interaction with the transporter was located at the protein-surface interface, diazepam at the membrane region and chlordiazepoxide at the protein surface. Only the flurazepam interaction site was not detected by the quenchers used. All benzodiazepines were able to elicit reorientation of the protein fluorophores on the P-glycoprotein—ATP complex. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Benzodiazepine-Mediated Structural Changes in the Multidrug Transporter P-Glycoprotein: An Intrinsic Fluorescence Quenching Analysis

Loading next page...
 
/lp/springer_journal/benzodiazepine-mediated-structural-changes-in-the-multidrug-bXwPFWDtlG
Publisher
Springer-Verlag
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-008-9117-5
Publisher site
See Article on Publisher Site

Abstract

P-glycoprotein expressed in Pichia pastoris was used to study the drug binding sites of different benzodiazepines. The effect of bromazepam, chlordiazepoxide, diazepam and flurazepam on P-glycoprotein structure was investigated by measuring the intrinsic fluorescence of the transporter tryptophan residues. Purified mouse mdr1a transporter in mixed micelles of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid and 1,2-dimiristoyl-sn-glycerol-3-phosphocholine emitted fluorescence at 340 nm indicative of the fluorophores in a relatively apolar environment. Acrylamide and iodide ion were used as collisional quenchers toward distinct regions of the transporter, the protein and the interface protein-surface, respectively. Binding of ATP induced conformational changes at the protein surface level in accordance with the location of the nucleotide binding sites. Bromazepam interaction with the transporter was located at the protein-surface interface, diazepam at the membrane region and chlordiazepoxide at the protein surface. Only the flurazepam interaction site was not detected by the quenchers used. All benzodiazepines were able to elicit reorientation of the protein fluorophores on the P-glycoprotein—ATP complex.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 14, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off