Benzene-contaminated groundwater remediation using calcium peroxide nanoparticles: synthesis and process optimization

Benzene-contaminated groundwater remediation using calcium peroxide nanoparticles: synthesis and... Nano-size calcium peroxide (nCaO2) is an appropriate oxygen source which can meet the needs of in situ chemical oxidation (ISCO) for contaminant remediation from groundwater. In the present study, an easy to handle procedure for synthesis of CaO2 nanoparticles has been investigated. Modeling and optimization of synthesis process was performed by application of response surface methodology (RSM) and central composite rotatable design (CCRD) method. Synthesized nanoparticles were characterized by XRD and FESEM techniques. The optimal synthesis conditions were found to be 5:1, 570 rpm and 10 °C for H2O2:CaSO2 ratio, mixing rate and reaction temperature, respectively. Predicted values showed to be in good agreement with experimental results (R 2 values were 0.915 and 0.965 for CaO2 weight and nanoparticle size, respectively). To study the efficiency of synthesized nanoparticles for benzene removal from groundwater, batch experiments were applied in biotic and abiotic (chemical removal) conditions by 100, 200, 400, and 800 mg/L of nanoparticles within 70 days. Results indicated that application of 400 mg/L of CaO2 in biotic condition was able to remediate benzene completely from groundwater after 60 days. Furthermore, comparison of biotic and abiotic experiments showed a great potential of microbial stimulation using CaO2 nanoparticles in benzene remediation from groundwater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Monitoring and Assessment Springer Journals

Benzene-contaminated groundwater remediation using calcium peroxide nanoparticles: synthesis and process optimization

Loading next page...
 
/lp/springer_journal/benzene-contaminated-groundwater-remediation-using-calcium-peroxide-BCJ5ivhsil
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Environment; Monitoring/Environmental Analysis; Environmental Management; Ecotoxicology; Atmospheric Protection/Air Quality Control/Air Pollution; Ecology
ISSN
0167-6369
eISSN
1573-2959
D.O.I.
10.1007/s10661-017-6157-2
Publisher site
See Article on Publisher Site

Abstract

Nano-size calcium peroxide (nCaO2) is an appropriate oxygen source which can meet the needs of in situ chemical oxidation (ISCO) for contaminant remediation from groundwater. In the present study, an easy to handle procedure for synthesis of CaO2 nanoparticles has been investigated. Modeling and optimization of synthesis process was performed by application of response surface methodology (RSM) and central composite rotatable design (CCRD) method. Synthesized nanoparticles were characterized by XRD and FESEM techniques. The optimal synthesis conditions were found to be 5:1, 570 rpm and 10 °C for H2O2:CaSO2 ratio, mixing rate and reaction temperature, respectively. Predicted values showed to be in good agreement with experimental results (R 2 values were 0.915 and 0.965 for CaO2 weight and nanoparticle size, respectively). To study the efficiency of synthesized nanoparticles for benzene removal from groundwater, batch experiments were applied in biotic and abiotic (chemical removal) conditions by 100, 200, 400, and 800 mg/L of nanoparticles within 70 days. Results indicated that application of 400 mg/L of CaO2 in biotic condition was able to remediate benzene completely from groundwater after 60 days. Furthermore, comparison of biotic and abiotic experiments showed a great potential of microbial stimulation using CaO2 nanoparticles in benzene remediation from groundwater.

Journal

Environmental Monitoring and AssessmentSpringer Journals

Published: Aug 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off