Beneficiation of zinc from electric arc furnace dust using hydrometallurgical approach

Beneficiation of zinc from electric arc furnace dust using hydrometallurgical approach Zinc bearing wastes such as electric arc furnace dust (EAFD) obtained from steel making constitute an important resource for zinc extraction. Inclusion of heavy metals such as Pb, Cd, Cu, Cr, Ni, etc., in these wastes makes them hazardous to use and/or dispose. In the present research work, leaching kinetics of EAFD with sulfuric acid has been investigated and various experimental parameters such as concentration of lixiviant, stirring rate, sample particle size, liquid/solid proportion, and temperature of the reaction have been optimized. It has been found that the dissolution rate of EAFD increases with rise in temperature, acidic strength, rate of stirring, liquid to solid proportion and with reduction in EAFD particle size. From the analysis of leaching kinetic data by means of graphical and statistical methods, it has been evaluated that the leaching kinetics of EAFD is dictated by surface diffusion reaction. Apparent energy of activation for the leaching reaction of EAFD with sulfuric acid is found to be 13.1 kJ mol–1 within the temperature range of 308 to 358 K. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Beneficiation of zinc from electric arc furnace dust using hydrometallurgical approach

Loading next page...
 
/lp/springer_journal/beneficiation-of-zinc-from-electric-arc-furnace-dust-using-006DuhReVt
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216050244
Publisher site
See Article on Publisher Site

Abstract

Zinc bearing wastes such as electric arc furnace dust (EAFD) obtained from steel making constitute an important resource for zinc extraction. Inclusion of heavy metals such as Pb, Cd, Cu, Cr, Ni, etc., in these wastes makes them hazardous to use and/or dispose. In the present research work, leaching kinetics of EAFD with sulfuric acid has been investigated and various experimental parameters such as concentration of lixiviant, stirring rate, sample particle size, liquid/solid proportion, and temperature of the reaction have been optimized. It has been found that the dissolution rate of EAFD increases with rise in temperature, acidic strength, rate of stirring, liquid to solid proportion and with reduction in EAFD particle size. From the analysis of leaching kinetic data by means of graphical and statistical methods, it has been evaluated that the leaching kinetics of EAFD is dictated by surface diffusion reaction. Apparent energy of activation for the leaching reaction of EAFD with sulfuric acid is found to be 13.1 kJ mol–1 within the temperature range of 308 to 358 K.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Aug 12, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off