Beneficiated pozzolans as cement replacement in bamboo-reinforced concrete: the intrinsic characteristics

Beneficiated pozzolans as cement replacement in bamboo-reinforced concrete: the intrinsic... The use of concrete containing supplementary cementitious materials has gained popularity as an eco-efficient and sustainable alternative to a number of concrete applications. In this study, beneficiated pozzolans, ground granulated blast furnace slag (GGBS) and metakaolin (MK), were used as partial replacement of ordinary Portland cement in bamboo-reinforced concrete. In the mixtures, river sand and granite were used as fine and coarse aggregates, respectively. The compressive strength of concrete cubes, split-tensile strength of concrete cylinders, and flexural strength of reinforced concrete beams were determined after stipulated curing regimes. The morphology and mineralogy of bamboo and selected concrete mixtures were obtained using scanning electron microscope and X-ray diffraction, respectively. The concrete samples having blended cement were found to have better compressive and split-tensile strength than those made with conventional binder. Also, the mechanical characteristics of the samples improved up to 40% GGBS substitution. However, steel-reinforced concrete developed better flexural strength than the bamboo-reinforced concrete (BRC). The study recommends pretreatment of bamboo to ensure its adequate bonding with the cement paste, so as to achieve optimum performance of BRC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Innovative Infrastructure Solutions Springer Journals

Beneficiated pozzolans as cement replacement in bamboo-reinforced concrete: the intrinsic characteristics

Loading next page...
 
/lp/springer_journal/beneficiated-pozzolans-as-cement-replacement-in-bamboo-reinforced-BAXteAtP0K
Publisher
Springer International Publishing
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Earth Sciences; Geotechnical Engineering & Applied Earth Sciences; Environmental Science and Engineering; Geoengineering, Foundations, Hydraulics
ISSN
2364-4176
eISSN
2364-4184
D.O.I.
10.1007/s41062-018-0157-0
Publisher site
See Article on Publisher Site

Abstract

The use of concrete containing supplementary cementitious materials has gained popularity as an eco-efficient and sustainable alternative to a number of concrete applications. In this study, beneficiated pozzolans, ground granulated blast furnace slag (GGBS) and metakaolin (MK), were used as partial replacement of ordinary Portland cement in bamboo-reinforced concrete. In the mixtures, river sand and granite were used as fine and coarse aggregates, respectively. The compressive strength of concrete cubes, split-tensile strength of concrete cylinders, and flexural strength of reinforced concrete beams were determined after stipulated curing regimes. The morphology and mineralogy of bamboo and selected concrete mixtures were obtained using scanning electron microscope and X-ray diffraction, respectively. The concrete samples having blended cement were found to have better compressive and split-tensile strength than those made with conventional binder. Also, the mechanical characteristics of the samples improved up to 40% GGBS substitution. However, steel-reinforced concrete developed better flexural strength than the bamboo-reinforced concrete (BRC). The study recommends pretreatment of bamboo to ensure its adequate bonding with the cement paste, so as to achieve optimum performance of BRC.

Journal

Innovative Infrastructure SolutionsSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off