Benchmarking Performance of a Hybrid Intel Xeon/Xeon Phi System for Parallel Computation of Similarity Measures Between Large Vectors

Benchmarking Performance of a Hybrid Intel Xeon/Xeon Phi System for Parallel Computation of... The paper deals with parallelization of computing similarity measures between large vectors. Such computations are important components within many applications and consequently are of high importance. Rather than focusing on optimization of the algorithm itself, assuming specific measures, the paper assumes a general scheme for finding similarity measures for all pairs of vectors and investigates optimizations for scalability in a hybrid Intel Xeon/Xeon Phi system. Hybrid systems including multicore CPUs and many-core compute devices such as Intel Xeon Phi allow parallelization of such computations using vectorization but require proper load balancing and optimization techniques. The proposed implementation uses C/OpenMP with the offload mode to Xeon Phi cards. Several results are presented: execution times for various partitioning parameters such as batch sizes of vectors being compared, impact of dynamic adjustment of batch size, overlapping computations and communication. Execution times for comparison of all pairs of vectors are presented as well as those for which similarity measures account for a predefined threshold. The latter makes load balancing more difficult and is used as a benchmark for the proposed optimizations. Results are presented for the native mode on an Intel Xeon Phi, CPU only and the CPU $$+$$ + offload mode for a hybrid system with 2 Intel Xeons with 20 physical cores and 40 logical processors and 2 Intel Xeon Phis with a total of 120 physical cores and 480 logical processors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Parallel Programming Springer Journals

Benchmarking Performance of a Hybrid Intel Xeon/Xeon Phi System for Parallel Computation of Similarity Measures Between Large Vectors

Loading next page...
 
/lp/springer_journal/benchmarking-performance-of-a-hybrid-intel-xeon-xeon-phi-system-for-Q1YE2K0TJy
Publisher
Springer US
Copyright
Copyright © 2016 by The Author(s)
Subject
Computer Science; Theory of Computation; Processor Architectures; Software Engineering/Programming and Operating Systems
ISSN
0885-7458
eISSN
1573-7640
D.O.I.
10.1007/s10766-016-0455-0
Publisher site
See Article on Publisher Site

Abstract

The paper deals with parallelization of computing similarity measures between large vectors. Such computations are important components within many applications and consequently are of high importance. Rather than focusing on optimization of the algorithm itself, assuming specific measures, the paper assumes a general scheme for finding similarity measures for all pairs of vectors and investigates optimizations for scalability in a hybrid Intel Xeon/Xeon Phi system. Hybrid systems including multicore CPUs and many-core compute devices such as Intel Xeon Phi allow parallelization of such computations using vectorization but require proper load balancing and optimization techniques. The proposed implementation uses C/OpenMP with the offload mode to Xeon Phi cards. Several results are presented: execution times for various partitioning parameters such as batch sizes of vectors being compared, impact of dynamic adjustment of batch size, overlapping computations and communication. Execution times for comparison of all pairs of vectors are presented as well as those for which similarity measures account for a predefined threshold. The latter makes load balancing more difficult and is used as a benchmark for the proposed optimizations. Results are presented for the native mode on an Intel Xeon Phi, CPU only and the CPU $$+$$ + offload mode for a hybrid system with 2 Intel Xeons with 20 physical cores and 40 logical processors and 2 Intel Xeon Phis with a total of 120 physical cores and 480 logical processors.

Journal

International Journal of Parallel ProgrammingSpringer Journals

Published: Sep 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off