Benchmarking of the five-sensor probe method for a measurement of an interfacial area concentration

Benchmarking of the five-sensor probe method for a measurement of an interfacial area concentration Interfacial area concentration (IAC) is one of the most important parameters in the two-phase flow models. Five-sensor probe method is a useful measurement technique to measure an IAC. It is essentially based on the four-sensor probe method but it is improved by adapting one more sensor. The passing types of the interfaces through the sensors are classified into four categories and independent methods are applied to the interfaces belonging to each category. To verify the applicability of the five-sensor probe method, benchmarking tests are performed for a rectangular visual channel by using the photographic method. The bubble velocity, void fraction, and Sauter mean diameter measured by the probe are also benchmarked. This paper also includes the design of the five-sensor conductivity probe, the IAC measurement method, the signal processing procedure of the probe signal and the data analysis method by photography. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Benchmarking of the five-sensor probe method for a measurement of an interfacial area concentration

Loading next page...
 
/lp/springer_journal/benchmarking-of-the-five-sensor-probe-method-for-a-measurement-of-an-A9l54a0dMA
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0174-1
Publisher site
See Article on Publisher Site

Abstract

Interfacial area concentration (IAC) is one of the most important parameters in the two-phase flow models. Five-sensor probe method is a useful measurement technique to measure an IAC. It is essentially based on the four-sensor probe method but it is improved by adapting one more sensor. The passing types of the interfaces through the sensors are classified into four categories and independent methods are applied to the interfaces belonging to each category. To verify the applicability of the five-sensor probe method, benchmarking tests are performed for a rectangular visual channel by using the photographic method. The bubble velocity, void fraction, and Sauter mean diameter measured by the probe are also benchmarked. This paper also includes the design of the five-sensor conductivity probe, the IAC measurement method, the signal processing procedure of the probe signal and the data analysis method by photography.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 21, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off