BEM computation of 3D Stokes flow including moving front

BEM computation of 3D Stokes flow including moving front Liquid composite molding (LCM) includes all composite-manufacturing methods, where the liquid state resin is forced into the dry preformed reinforcement. In this study, numerical simulation of the resin infusion is presented based on a coupled approach involving Boundary Element Method (BEM) and Level Set Method. The method developed can handle stationary and transient flows by solving the Stokes equations. The numerical results on a square packed set of fibers show excellent agreement with the analytical model. The comparison between experimental and simulation results of flow front patterns revealed a fair accordance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Material Forming Springer Journals

BEM computation of 3D Stokes flow including moving front

Loading next page...
 
/lp/springer_journal/bem-computation-of-3d-stokes-flow-including-moving-front-FsO2JhT4rb
Publisher
Springer Paris
Copyright
Copyright © 2016 by Springer-Verlag France
Subject
Engineering; Operating Procedures, Materials Treatment; Materials Science, general; Manufacturing, Machines, Tools; Mechanical Engineering; Computational Intelligence; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
1960-6206
eISSN
1960-6214
D.O.I.
10.1007/s12289-016-1302-y
Publisher site
See Article on Publisher Site

Abstract

Liquid composite molding (LCM) includes all composite-manufacturing methods, where the liquid state resin is forced into the dry preformed reinforcement. In this study, numerical simulation of the resin infusion is presented based on a coupled approach involving Boundary Element Method (BEM) and Level Set Method. The method developed can handle stationary and transient flows by solving the Stokes equations. The numerical results on a square packed set of fibers show excellent agreement with the analytical model. The comparison between experimental and simulation results of flow front patterns revealed a fair accordance.

Journal

International Journal of Material FormingSpringer Journals

Published: Jul 2, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off