Behavioural and Electrophysiological Responses of Mosquito Vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus to an Ethyl Ester: Ethyl 2-aminobenzoate

Behavioural and Electrophysiological Responses of Mosquito Vectors Aedes aegypti, Anopheles... Mosquito control using different methods remains an integral component of intervention programmes which aim to protect humans from various mosquito-borne diseases. The host seeking behaviour of mosquitoes is essentially guided by odorant receptor neurons housed in the antenna, maxillary palps and proboscis. The odorant receptor neurons are responsible for detecting chemical cues from hosts and also useful for developing sustainable mosquito-control strategies that exploit host-seeking behaviours. The present investigation evaluates host seeking behavioural responses of a novel, non-toxic and environment friendly repellent, ethyl 2-aminobenzoate against three known vector species of mosquitoes viz. Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus maintained in laboratory. The flight orientation of the test mosquitoes was studied using Y-tube olfactometer, whereas the antennae of adult female mosquitoes were used to investigate the effect of ethyl 2-aminobenzoate on the peripheral olfactory system using electroantennogram (EAG). The findings demonstrate that ethyl 2-aminobenzoate exhibited significant response in Y-tube olfactometer against all the three known vector species of mosquitoes. However, only Anopheles stephensi significantly elicited responses in EAG experiments, while the responses obtained for Aedes aegypti and Culex quinquefasciatus were not statistically significant. The results conclude that currently evaluated chemical ethyl 2-aminobenzoate has potential against some well established mosquito vector species and could be exploited to develop new and comparatively more effective anti-mosquito formulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Insect Behavior Springer Journals

Behavioural and Electrophysiological Responses of Mosquito Vectors Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus to an Ethyl Ester: Ethyl 2-aminobenzoate

Loading next page...
 
/lp/springer_journal/behavioural-and-electrophysiological-responses-of-mosquito-vectors-6x7FRB12Yl
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Entomology; Behavioral Sciences; Neurobiology; Agriculture; Animal Ecology; Evolutionary Biology
ISSN
0892-7553
eISSN
1572-8889
D.O.I.
10.1007/s10905-017-9614-4
Publisher site
See Article on Publisher Site

Abstract

Mosquito control using different methods remains an integral component of intervention programmes which aim to protect humans from various mosquito-borne diseases. The host seeking behaviour of mosquitoes is essentially guided by odorant receptor neurons housed in the antenna, maxillary palps and proboscis. The odorant receptor neurons are responsible for detecting chemical cues from hosts and also useful for developing sustainable mosquito-control strategies that exploit host-seeking behaviours. The present investigation evaluates host seeking behavioural responses of a novel, non-toxic and environment friendly repellent, ethyl 2-aminobenzoate against three known vector species of mosquitoes viz. Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus maintained in laboratory. The flight orientation of the test mosquitoes was studied using Y-tube olfactometer, whereas the antennae of adult female mosquitoes were used to investigate the effect of ethyl 2-aminobenzoate on the peripheral olfactory system using electroantennogram (EAG). The findings demonstrate that ethyl 2-aminobenzoate exhibited significant response in Y-tube olfactometer against all the three known vector species of mosquitoes. However, only Anopheles stephensi significantly elicited responses in EAG experiments, while the responses obtained for Aedes aegypti and Culex quinquefasciatus were not statistically significant. The results conclude that currently evaluated chemical ethyl 2-aminobenzoate has potential against some well established mosquito vector species and could be exploited to develop new and comparatively more effective anti-mosquito formulations.

Journal

Journal of Insect BehaviorSpringer Journals

Published: Apr 18, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off