Behavior of shock trains in a diverging duct

Behavior of shock trains in a diverging duct A shock train inside a diverging duct is analyzed at different pressure levels and Mach numbers. Nonreactive pressurized cold gas is used as fluid. The structure and pressure recovery inside the shock train is analyzed by means of wall pressure measurements, Schlieren images and total pressure probes. During the course of the experiments, the total pressure of the flow, the back pressure level and the Mach number upstream of the compression region have been varied. It is shown that the Reynolds number has some small effect on the shock position and length of the shock train. However, more dominant is the effect of the confinement level and Mach number. The results are compared with analytical and empirical models from the literature. It was found that the empirical pseudo-shock model from Billig and the analytical mass averaging model from Matsuo are suitable to compute the pressure gradient along the shock train and total pressure loss, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Behavior of shock trains in a diverging duct

Loading next page...
 
/lp/springer_journal/behavior-of-shock-trains-in-a-diverging-duct-VA7DffxvGB
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0764-9
Publisher site
See Article on Publisher Site

Abstract

A shock train inside a diverging duct is analyzed at different pressure levels and Mach numbers. Nonreactive pressurized cold gas is used as fluid. The structure and pressure recovery inside the shock train is analyzed by means of wall pressure measurements, Schlieren images and total pressure probes. During the course of the experiments, the total pressure of the flow, the back pressure level and the Mach number upstream of the compression region have been varied. It is shown that the Reynolds number has some small effect on the shock position and length of the shock train. However, more dominant is the effect of the confinement level and Mach number. The results are compared with analytical and empirical models from the literature. It was found that the empirical pseudo-shock model from Billig and the analytical mass averaging model from Matsuo are suitable to compute the pressure gradient along the shock train and total pressure loss, respectively.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 6, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off