BEGAIN: A novel imprinted gene that generates paternally expressed transcripts in a tissue- and promoter-specific manner in sheep

BEGAIN: A novel imprinted gene that generates paternally expressed transcripts in a tissue- and... In this article we describe the organization of the ovine BEGAIN gene, located 138 kb proximally from the imprinted DLK1 gene and 203 kb from the CLPG mutation that causes the callipyge phenotype. We have shown that in sheep BEGAIN is ubiquitously expressed, including in skeletal muscle, throughout development. We have identified four major BEGAIN transcripts resulting from a combination of alternate promoter usage and alternative splicing. In ovine brain, kidney, liver, and skeletal muscle, these four BEGAIN transcripts exhibited paternal or biallelic expression in a tissue- and promoter-specific manner. Our results indicate that the CLPG mutation does not alter transcript levels of BEGAIN, contrary to its effect on a core cluster of genes in the DLK1-GTL2 domain. Thus, although the BEGAIN gene represents another paternally expressed gene in the ovine DLK1-GTL2 imprinted domain, its expression is not governed by the long-range regulatory element that contains the CLPG mutation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

BEGAIN: A novel imprinted gene that generates paternally expressed transcripts in a tissue- and promoter-specific manner in sheep

Loading next page...
 
/lp/springer_journal/begain-a-novel-imprinted-gene-that-generates-paternally-expressed-vcGe3jsVQl
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-004-2415-z
Publisher site
See Article on Publisher Site

Abstract

In this article we describe the organization of the ovine BEGAIN gene, located 138 kb proximally from the imprinted DLK1 gene and 203 kb from the CLPG mutation that causes the callipyge phenotype. We have shown that in sheep BEGAIN is ubiquitously expressed, including in skeletal muscle, throughout development. We have identified four major BEGAIN transcripts resulting from a combination of alternate promoter usage and alternative splicing. In ovine brain, kidney, liver, and skeletal muscle, these four BEGAIN transcripts exhibited paternal or biallelic expression in a tissue- and promoter-specific manner. Our results indicate that the CLPG mutation does not alter transcript levels of BEGAIN, contrary to its effect on a core cluster of genes in the DLK1-GTL2 domain. Thus, although the BEGAIN gene represents another paternally expressed gene in the ovine DLK1-GTL2 imprinted domain, its expression is not governed by the long-range regulatory element that contains the CLPG mutation.

Journal

Mammalian GenomeSpringer Journals

Published: Oct 29, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off