Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Beak and feather disease viruses circulating in Cape parrots ( Poicepahlus robustus ) in South Africa

Beak and feather disease viruses circulating in Cape parrots ( Poicepahlus robustus ) in South... Captive and wild psittacines are vulnerable to the highly contagious psittacine beak and feather disease. The causative agent, beak and feather disease virus (BFDV), was recently detected in the largest remaining population of endangered Cape parrots ( Poicepahlus robustus ), which are endemic to South Africa. Full-length genomes were isolated and sequenced from 26 blood samples collected from wild and captive Cape parrots to determine possible origins of infection. All sequences had characteristic BFDV sequence motifs and were similar in length to those described in the literature. However, BFDV coat protein (CP) sequences from this study did not contain a previously identified bipartite nuclear localisation signal (NLS) within residues 39-56, which indicates that an alternate NLS is involved in shuttling the CP into the nucleus. Sequences from the wild population shared a high degree of similarity, irrespective of year or location, suggesting that the disease outbreak occurred close to the time when the samples were collected. Phylogenetic analysis of full-length genomes showed that the captive Cape parrot sequences cluster with those isolated from captive-bred budgerigars in KwaZulu-Natal Province, South Africa. Exposure to captive-bred Cape parrots from a breeding facility in KwaZulu-Natal is suggested as a possible source for the virus infection. Phylogenetic analysis of BFDV isolates from wild and captive Cape parrots indicated two separate infection events in different populations, which highlights the potential risk of introducing new strains of the virus into the wild population. The present study represents the first systematic investigation of BFDV virus diversity in the southern-most population of Cape parrots. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Beak and feather disease viruses circulating in Cape parrots ( Poicepahlus robustus ) in South Africa

Loading next page...
 
/lp/springer_journal/beak-and-feather-disease-viruses-circulating-in-cape-parrots-217tL2CQXX

References (31)

Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
DOI
10.1007/s00705-014-2226-9
pmid
25209153
Publisher site
See Article on Publisher Site

Abstract

Captive and wild psittacines are vulnerable to the highly contagious psittacine beak and feather disease. The causative agent, beak and feather disease virus (BFDV), was recently detected in the largest remaining population of endangered Cape parrots ( Poicepahlus robustus ), which are endemic to South Africa. Full-length genomes were isolated and sequenced from 26 blood samples collected from wild and captive Cape parrots to determine possible origins of infection. All sequences had characteristic BFDV sequence motifs and were similar in length to those described in the literature. However, BFDV coat protein (CP) sequences from this study did not contain a previously identified bipartite nuclear localisation signal (NLS) within residues 39-56, which indicates that an alternate NLS is involved in shuttling the CP into the nucleus. Sequences from the wild population shared a high degree of similarity, irrespective of year or location, suggesting that the disease outbreak occurred close to the time when the samples were collected. Phylogenetic analysis of full-length genomes showed that the captive Cape parrot sequences cluster with those isolated from captive-bred budgerigars in KwaZulu-Natal Province, South Africa. Exposure to captive-bred Cape parrots from a breeding facility in KwaZulu-Natal is suggested as a possible source for the virus infection. Phylogenetic analysis of BFDV isolates from wild and captive Cape parrots indicated two separate infection events in different populations, which highlights the potential risk of introducing new strains of the virus into the wild population. The present study represents the first systematic investigation of BFDV virus diversity in the southern-most population of Cape parrots.

Journal

Archives of VirologySpringer Journals

Published: Jan 1, 2015

There are no references for this article.