BB rat diabetes susceptibility and body weight regulation genes colocalize on Chromosome 2

BB rat diabetes susceptibility and body weight regulation genes colocalize on Chromosome 2 The genetic etiology of Type 1 (insulin-dependent) diabetes mellitus is complicated by the apparent presence of several diabetes susceptibility genetic regions. Type 1 diabetes in the inbred BioBreeding (BB) rat closely resembles the human disorder and was previously shown to involve two genes: the lymphopenia (lyp) region on Chromosome (Chr) 4 and RT1 u in the major histocompatibility complex (MHC) on Chr 20. In addition, a segregation analysis of an F2 intercross between the diabetes-prone congenic BB DR lyp/lyp,u/u and F344+/+, lv/lv rats indicated that at least one more genetic factor was responsible for Type 1 diabetes. In this study, we generated F2N2 progeny in a cross between non-diabetic F2(DR lyp/lyp,u/u × F344) lyp/lyp,u/u and diabetic DR lyp/lyp,u/u rats. In a subsequent total genome scan, a third factor was mapped to the 21.3-cM region on Chr 2 between D2Mit14 and D2Mit15 (peak LOD score 4.7 with 67% penetrance). Interestingly, the homozygosity of the BB allele (b/b) for the Chr 2 region was significantly associated with a greater weight reduction after fasting than the homozygosity of the F344 allele (f/f, p < 0.008). In conclusion, the development of Type 1 diabetes in the congenic DR lyp/lyp rat is controlled by at least three genes: lymphopenia, MHC, and a third factor that may play a role in metabolism and body weight regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

BB rat diabetes susceptibility and body weight regulation genes colocalize on Chromosome 2

Loading next page...
 
/lp/springer_journal/bb-rat-diabetes-susceptibility-and-body-weight-regulation-genes-BUSS0yDA47
Publisher
Springer-Verlag
Copyright
Copyright © 1999 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003359901108
Publisher site
See Article on Publisher Site

Abstract

The genetic etiology of Type 1 (insulin-dependent) diabetes mellitus is complicated by the apparent presence of several diabetes susceptibility genetic regions. Type 1 diabetes in the inbred BioBreeding (BB) rat closely resembles the human disorder and was previously shown to involve two genes: the lymphopenia (lyp) region on Chromosome (Chr) 4 and RT1 u in the major histocompatibility complex (MHC) on Chr 20. In addition, a segregation analysis of an F2 intercross between the diabetes-prone congenic BB DR lyp/lyp,u/u and F344+/+, lv/lv rats indicated that at least one more genetic factor was responsible for Type 1 diabetes. In this study, we generated F2N2 progeny in a cross between non-diabetic F2(DR lyp/lyp,u/u × F344) lyp/lyp,u/u and diabetic DR lyp/lyp,u/u rats. In a subsequent total genome scan, a third factor was mapped to the 21.3-cM region on Chr 2 between D2Mit14 and D2Mit15 (peak LOD score 4.7 with 67% penetrance). Interestingly, the homozygosity of the BB allele (b/b) for the Chr 2 region was significantly associated with a greater weight reduction after fasting than the homozygosity of the F344 allele (f/f, p < 0.008). In conclusion, the development of Type 1 diabetes in the congenic DR lyp/lyp rat is controlled by at least three genes: lymphopenia, MHC, and a third factor that may play a role in metabolism and body weight regulation.

Journal

Mammalian GenomeSpringer Journals

Published: Sep 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off