Bayesian regularisation in geoadditive expectile regression

Bayesian regularisation in geoadditive expectile regression Regression modelling beyond the mean of the response has found a lot of attention in the last years. Expectile regression is a special and computationally convenient case of this type of models where expectiles offer a quantile-like characterisation of the complete distribution and include the mean as a special case. In the frequentist framework, expectile regression could be combined with covariate effects of quite different forms and in particular nonlinear and spatial effects. We propose Bayesian expectile regression based on the asymmetric normal distribution as an auxiliary likelihood to allow for the additional inclusion of Bayesian regularisation priors for covariates with linear effects. Proposal densities based on iteratively weighted least squares updates for the resulting Markov chain Monte Carlo simulation algorithm are developed and evaluated in both simulations and an application. A special focus of the simulations lies on the evaluation of coverage properties of the Bayesian credible bands and the quantification of the detrimental effect arising from the misspecification of the auxiliary likelihood. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics and Computing Springer Journals

Bayesian regularisation in geoadditive expectile regression

Loading next page...
 
/lp/springer_journal/bayesian-regularisation-in-geoadditive-expectile-regression-J2WIZeXcs0
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Statistics; Statistics and Computing/Statistics Programs; Artificial Intelligence (incl. Robotics); Statistical Theory and Methods; Probability and Statistics in Computer Science
ISSN
0960-3174
eISSN
1573-1375
D.O.I.
10.1007/s11222-016-9703-9
Publisher site
See Article on Publisher Site

Abstract

Regression modelling beyond the mean of the response has found a lot of attention in the last years. Expectile regression is a special and computationally convenient case of this type of models where expectiles offer a quantile-like characterisation of the complete distribution and include the mean as a special case. In the frequentist framework, expectile regression could be combined with covariate effects of quite different forms and in particular nonlinear and spatial effects. We propose Bayesian expectile regression based on the asymmetric normal distribution as an auxiliary likelihood to allow for the additional inclusion of Bayesian regularisation priors for covariates with linear effects. Proposal densities based on iteratively weighted least squares updates for the resulting Markov chain Monte Carlo simulation algorithm are developed and evaluated in both simulations and an application. A special focus of the simulations lies on the evaluation of coverage properties of the Bayesian credible bands and the quantification of the detrimental effect arising from the misspecification of the auxiliary likelihood.

Journal

Statistics and ComputingSpringer Journals

Published: Sep 19, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off