Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil

Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil In this paper, we shall investigate sequential data assimilation techniques to improve the stability of reduced-order models for fluid flows. The reduced-order model used relies on a Galerkin projection of Navier–Stokes equations on proper orthogonal decomposition (POD) basis vectors estimated from snapshots of the flow fields obtained with time-resolved particle image velocimetry (TR-PIV) measurements. The coefficients of the dynamical system are given through a least-squares regression technique applied to the experimental data and lead to a low-order model which is known to diverge, or damp, rapidly in time if left uncontrolled. In this context, a sequential data assimilation method based on a Bayesian approach is proposed. In this formalism, reduced-order models (ROMs) are modeled with discrete time from the hidden Markov processes. Given the whole trajectories of the POD temporal modes, the state of ROM coefficients initially provided by noisy PIV measurements are re-estimated from a Kalman filtering of the sequential data. Results are obtained for the flow around a NACA0012 airfoil at Reynolds numbers of 1000 and 2000 and angles of attack of $$10^{\circ },15^{\circ },20^{\circ }$$ 10 ∘ , 15 ∘ , 20 ∘ and $$30^{\circ }$$ 30 ∘ . Experiments in Fluids Springer Journals

Bayesian inference applied to spatio-temporal reconstruction of flows around a NACA0012 airfoil

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial