Bayesian Estimation of the DINA Q matrix

Bayesian Estimation of the DINA Q matrix Cognitive diagnosis models are partially ordered latent class models and are used to classify students into skill mastery profiles. The deterministic inputs, noisy “and” gate model (DINA) is a popular psychometric model for cognitive diagnosis. Application of the DINA model requires content expert knowledge of a Q matrix, which maps the attributes or skills needed to master a collection of items. Misspecification of Q has been shown to yield biased diagnostic classifications. We propose a Bayesian framework for estimating the DINA Q matrix. The developed algorithm builds upon prior research (Chen, Liu, Xu, & Ying, in J Am Stat Assoc 110(510):850–866, 2015) and ensures the estimated Q matrix is identified. Monte Carlo evidence is presented to support the accuracy of parameter recovery. The developed methodology is applied to Tatsuoka’s fraction-subtraction dataset. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Psychometrika Springer Journals

Bayesian Estimation of the DINA Q matrix

Loading next page...
 
/lp/springer_journal/bayesian-estimation-of-the-dina-q-matrix-Mv30DMCFrA
Publisher
Springer US
Copyright
Copyright © 2017 by The Psychometric Society
Subject
Psychology; Psychometrics; Assessment, Testing and Evaluation; Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law; Statistical Theory and Methods
ISSN
0033-3123
eISSN
1860-0980
D.O.I.
10.1007/s11336-017-9579-4
Publisher site
See Article on Publisher Site

Abstract

Cognitive diagnosis models are partially ordered latent class models and are used to classify students into skill mastery profiles. The deterministic inputs, noisy “and” gate model (DINA) is a popular psychometric model for cognitive diagnosis. Application of the DINA model requires content expert knowledge of a Q matrix, which maps the attributes or skills needed to master a collection of items. Misspecification of Q has been shown to yield biased diagnostic classifications. We propose a Bayesian framework for estimating the DINA Q matrix. The developed algorithm builds upon prior research (Chen, Liu, Xu, & Ying, in J Am Stat Assoc 110(510):850–866, 2015) and ensures the estimated Q matrix is identified. Monte Carlo evidence is presented to support the accuracy of parameter recovery. The developed methodology is applied to Tatsuoka’s fraction-subtraction dataset.

Journal

PsychometrikaSpringer Journals

Published: Aug 31, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off