Bayesian Approach to Hurst Exponent Estimation

Bayesian Approach to Hurst Exponent Estimation Fractal investigation of a signal often involves estimating its fractal dimension or Hurst exponent H when considered as a sample of a fractional process. Fractional Gaussian noise (fGn) belongs to the family of self-similar fractional processes and it is dependent on parameter H. There are variety of traditional methods for Hurst exponent estimation. Our novel approach is based on zero-crossing principle and signal segmentation. Thanks to the Bayesian analysis, we present a new axiomatically based procedure of determining the expected value of Hurst exponent together with its standard deviation and credible intervals. The statistical characteristics are calculated at the interval level at first and then they are used for the deduction of the aggregate estimate. The methodology is subsequently used for the EEG signal analysis of patients suffering from Alzheimer disease. Methodology and Computing in Applied Probability Springer Journals

Bayesian Approach to Hurst Exponent Estimation

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Statistics; Statistics, general; Life Sciences, general; Electrical Engineering; Economics, general; Business and Management, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial