Bayesian analysis of within-field variability of corn yield using a spatial hierarchical model

Bayesian analysis of within-field variability of corn yield using a spatial hierarchical model Understanding relationships of soil and field topography to crop yield within a field is critical in site-specific management systems. Challenges for efficiently assessing these relationships include spatially correlated yield data and interrelated soil and topographic properties. The objective of this analysis was to apply a spatial Bayesian hierarchical model to examine the effects of soil, topographic and climate variables on corn yield. The model included a mean structure of spatial and temporal co-variates and an explicit random spatial effect. The spatial co-variates included elevation, slope and apparent soil electrical conductivity, temporal co-variates included mean maximum daily temperature, mean daily temperature range and cumulative precipitation in July and August. A conditional auto-regressive (CAR) model was used to model the spatial association in yield. Mapped corn yield data from 1997, 1999, 2001 and 2003 for a 36-ha Missouri claypan soil field were used in the analysis. The model building and computation were performed using a free Bayesian modeling software package, WinBUGS. The relationships of co-variates to corn yield generally agreed with the literature. The CAR model successfully captured the spatial association in yield. Model standard deviation decreased about 50% with spatial effect accounted for. Further, the approach was able to assess the effects of temporal climate co-variates on corn yield with a small number of site-years. The spatial Bayesian model appeared to be a useful tool to gain insights into yield spatial and temporal variability related to soil, topography and growing season weather conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Bayesian analysis of within-field variability of corn yield using a spatial hierarchical model

Loading next page...
 
/lp/springer_journal/bayesian-analysis-of-within-field-variability-of-corn-yield-using-a-RyR0coVMZT
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-008-9070-4
Publisher site
See Article on Publisher Site

Abstract

Understanding relationships of soil and field topography to crop yield within a field is critical in site-specific management systems. Challenges for efficiently assessing these relationships include spatially correlated yield data and interrelated soil and topographic properties. The objective of this analysis was to apply a spatial Bayesian hierarchical model to examine the effects of soil, topographic and climate variables on corn yield. The model included a mean structure of spatial and temporal co-variates and an explicit random spatial effect. The spatial co-variates included elevation, slope and apparent soil electrical conductivity, temporal co-variates included mean maximum daily temperature, mean daily temperature range and cumulative precipitation in July and August. A conditional auto-regressive (CAR) model was used to model the spatial association in yield. Mapped corn yield data from 1997, 1999, 2001 and 2003 for a 36-ha Missouri claypan soil field were used in the analysis. The model building and computation were performed using a free Bayesian modeling software package, WinBUGS. The relationships of co-variates to corn yield generally agreed with the literature. The CAR model successfully captured the spatial association in yield. Model standard deviation decreased about 50% with spatial effect accounted for. Further, the approach was able to assess the effects of temporal climate co-variates on corn yield with a small number of site-years. The spatial Bayesian model appeared to be a useful tool to gain insights into yield spatial and temporal variability related to soil, topography and growing season weather conditions.

Journal

Precision AgricultureSpringer Journals

Published: Jul 9, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off