Bayesian Analysis of MicroScale Thermophoresis Data to Quantify Affinity of Protein:Protein Interactions with Human Survivin

Bayesian Analysis of MicroScale Thermophoresis Data to Quantify Affinity of Protein:Protein... A biomolecular ensemble exhibits different responses to a temperature gradient depending on its diffusion properties. MicroScale Thermophoresis technique exploits this effect and is becoming a popular technique for analyzing interactions of biomolecules in solution. When comparing affinities of related compounds, the reliability of the determined thermodynamic parameters often comes into question. The thermophoresis binding curves can be assessed by Bayesian inference, which provides a probability distribution for the dissociation constant of the interacting partners. By applying Bayesian machine learning principles, binding curves can be autonomously analyzed without manual intervention and without introducing subjective bias by outlier rejection. We demonstrate the Bayesian inference protocol on the known survivin:borealin interaction and on the putative protein-protein interactions between human survivin and two members of the human Shugoshin-like family (hSgol1 and hSgol2). These interactions were identified in a protein microarray binding assay against survivin and confirmed by MicroScale Thermophoresis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Bayesian Analysis of MicroScale Thermophoresis Data to Quantify Affinity of Protein:Protein Interactions with Human Survivin

Loading next page...
 
/lp/springer_journal/bayesian-analysis-of-microscale-thermophoresis-data-to-quantify-USj0qXDKO7
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-17071-0
Publisher site
See Article on Publisher Site

Abstract

A biomolecular ensemble exhibits different responses to a temperature gradient depending on its diffusion properties. MicroScale Thermophoresis technique exploits this effect and is becoming a popular technique for analyzing interactions of biomolecules in solution. When comparing affinities of related compounds, the reliability of the determined thermodynamic parameters often comes into question. The thermophoresis binding curves can be assessed by Bayesian inference, which provides a probability distribution for the dissociation constant of the interacting partners. By applying Bayesian machine learning principles, binding curves can be autonomously analyzed without manual intervention and without introducing subjective bias by outlier rejection. We demonstrate the Bayesian inference protocol on the known survivin:borealin interaction and on the putative protein-protein interactions between human survivin and two members of the human Shugoshin-like family (hSgol1 and hSgol2). These interactions were identified in a protein microarray binding assay against survivin and confirmed by MicroScale Thermophoresis.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off