Barley (Hordeum vulgare L.) inositol monophosphatase: gene structure and enzyme characteristics

Barley (Hordeum vulgare L.) inositol monophosphatase: gene structure and enzyme characteristics The cellular myo-inositol (Ins) pool is important to many metabolic and signaling pathways in plants. Ins monophosphatase (IMPase; EC 3.1.3.25) activity is essential for the de novo synthesis of myo-Inositol (Ins), and for recycling of Ins in Ins(1,4,5)P3. However, proteins encoded by at least one family of IMP genes also have l-galactose-1-P phosphatase activity important to ascorbic acid synthesis, indicating a bifunctionality that links these two branches of carbon metabolism. As part of research into the regulation of Ins synthesis and supply during seed development, the barley IMP-1 gene and gene products were studied. The 1.4 kb barley IMP-1 promoter contains one low temperature response element (RE), two heat shock REs, one gibberellin and two auxin REs, and five sugar REs. Barley IMP-1 is expressed in all tissues assayed, and expression levels were not greatly altered by abiotic stress treatments. Reduced use of Ins for Ins P6 synthesis in developing seed of barley low phytic acid (lpa) mutants results in Ins accumulation, and IMP-1 expression is reduced in proportion to the increase in Ins level. The barley recombinant enzyme had a lower Km, indicating higher affinity, for d/l-Ins(3)P1 (Km = 9.7 μM) as compared with reported Km (Ins P1) values for other eukaryotic IMPases (43–330 μM) or with a reported Km (l-Gal-1P) of 150 μM for a kiwifruit (Actinidia deliciosa) enzyme. These and other data indicate that the barley IMP-1 gene is regulated at least in part in response to Ins metabolic needs, and that the enzyme it encodes displays catalytic properties well suited for a role in Ins synthesis, in addition to other roles as an l-gal-1-P phosphatase important to ascorbate synthesis, or as an IMPase important to Ins(1,4,5)P3 signal recycling. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Barley (Hordeum vulgare L.) inositol monophosphatase: gene structure and enzyme characteristics

Loading next page...
 
/lp/springer_journal/barley-hordeum-vulgare-l-inositol-monophosphatase-gene-structure-and-WJA5U00tAz
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9343-3
Publisher site
See Article on Publisher Site

Abstract

The cellular myo-inositol (Ins) pool is important to many metabolic and signaling pathways in plants. Ins monophosphatase (IMPase; EC 3.1.3.25) activity is essential for the de novo synthesis of myo-Inositol (Ins), and for recycling of Ins in Ins(1,4,5)P3. However, proteins encoded by at least one family of IMP genes also have l-galactose-1-P phosphatase activity important to ascorbic acid synthesis, indicating a bifunctionality that links these two branches of carbon metabolism. As part of research into the regulation of Ins synthesis and supply during seed development, the barley IMP-1 gene and gene products were studied. The 1.4 kb barley IMP-1 promoter contains one low temperature response element (RE), two heat shock REs, one gibberellin and two auxin REs, and five sugar REs. Barley IMP-1 is expressed in all tissues assayed, and expression levels were not greatly altered by abiotic stress treatments. Reduced use of Ins for Ins P6 synthesis in developing seed of barley low phytic acid (lpa) mutants results in Ins accumulation, and IMP-1 expression is reduced in proportion to the increase in Ins level. The barley recombinant enzyme had a lower Km, indicating higher affinity, for d/l-Ins(3)P1 (Km = 9.7 μM) as compared with reported Km (Ins P1) values for other eukaryotic IMPases (43–330 μM) or with a reported Km (l-Gal-1P) of 150 μM for a kiwifruit (Actinidia deliciosa) enzyme. These and other data indicate that the barley IMP-1 gene is regulated at least in part in response to Ins metabolic needs, and that the enzyme it encodes displays catalytic properties well suited for a role in Ins synthesis, in addition to other roles as an l-gal-1-P phosphatase important to ascorbate synthesis, or as an IMPase important to Ins(1,4,5)P3 signal recycling.

Journal

Plant Molecular BiologySpringer Journals

Published: May 21, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off