Barley Chromosome Identification Using Genomic in Situ Hybridization in the Genome of Backcrossed Progeny of Barley–Wheat Amphiploids [Hordeum geniculatum all. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70)

Barley Chromosome Identification Using Genomic in Situ Hybridization in the Genome of Backcrossed... Genomic in situ hybridization (GISH) has been used to study characteristics of the formation of alloplasmic lines detected among self-pollinated backcrossed progeny (BC1F5–BC1F8) of barley–wheat amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70). The chromosome material of the wild barley H. geniculatum has been shown to contribute to these lines. For example, fifth-generation plants (BC1F5) had genotypes (2n= 42w + 2g), (2n = 42w + 1g + 1tg), and (2n = 41w + 1g), where w is common wheat chromosomes, g is barley (H. geniculatum) chromosomes, and tg is the telocentric chromosome of wild barley. Beginning from theBC1F6 generation, alloplasmic telocentric addition lines (2n= 42 + 2tg) and (2n = 42 + 1tg) appear. This lines has been found cytogenetically unstable. The progeny of each of these cytological types include not only the (2n= 42 + 2tg) and (2n = 42 + 1tg) addition plants, but also plants with the monosomic (2n = 41 + 1tg) and the disomic (2n = 40 + 2tg) substitutions, as well as the (2n = 41 + 2tg) plants, which lack one wheat chromosome and have two telocentric barley chromosomes. It has been demonstrated that the selection for well-filled grains favors the segregation of telocentric addition lines (2n = 42 + 2tg) and (2n = 42 + 1tg). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Barley Chromosome Identification Using Genomic in Situ Hybridization in the Genome of Backcrossed Progeny of Barley–Wheat Amphiploids [Hordeum geniculatum all. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70)

Loading next page...
 
/lp/springer_journal/barley-chromosome-identification-using-genomic-in-situ-hybridization-G7Ukjr5ZyS
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/B:RUGE.0000041380.12101.ab
Publisher site
See Article on Publisher Site

Abstract

Genomic in situ hybridization (GISH) has been used to study characteristics of the formation of alloplasmic lines detected among self-pollinated backcrossed progeny (BC1F5–BC1F8) of barley–wheat amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70). The chromosome material of the wild barley H. geniculatum has been shown to contribute to these lines. For example, fifth-generation plants (BC1F5) had genotypes (2n= 42w + 2g), (2n = 42w + 1g + 1tg), and (2n = 41w + 1g), where w is common wheat chromosomes, g is barley (H. geniculatum) chromosomes, and tg is the telocentric chromosome of wild barley. Beginning from theBC1F6 generation, alloplasmic telocentric addition lines (2n= 42 + 2tg) and (2n = 42 + 1tg) appear. This lines has been found cytogenetically unstable. The progeny of each of these cytological types include not only the (2n= 42 + 2tg) and (2n = 42 + 1tg) addition plants, but also plants with the monosomic (2n = 41 + 1tg) and the disomic (2n = 40 + 2tg) substitutions, as well as the (2n = 41 + 2tg) plants, which lack one wheat chromosome and have two telocentric barley chromosomes. It has been demonstrated that the selection for well-filled grains favors the segregation of telocentric addition lines (2n = 42 + 2tg) and (2n = 42 + 1tg).

Journal

Russian Journal of GeneticsSpringer Journals

Published: Dec 28, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off