Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach

Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria... The main purpose of this paper is to evaluate the data mining applications, such as classification, which have been used in previous bankruptcy prediction studies and credit rating studies. Our study proposes a multiple criteria linear programming (MCLP) method to predict bankruptcy using Korean bankruptcy data after the 1997 financial crisis. The results, of the MCLP approach in our Korean bankruptcy prediction study, show that our method performs as well as traditional multiple discriminant analysis or logit analysis using only financial data. In addition, our model’s overall prediction accuracy is comparable to those of decision tree or support vector machine approaches. However, our results are not generalizable because our data are from a special situation in Korea. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach

Loading next page...
 
/lp/springer_journal/bankruptcy-prediction-for-korean-firms-after-the-1997-financial-crisis-VbBHnuxYqj
Publisher
Springer US
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1007/s11156-011-0238-z
Publisher site
See Article on Publisher Site

Abstract

The main purpose of this paper is to evaluate the data mining applications, such as classification, which have been used in previous bankruptcy prediction studies and credit rating studies. Our study proposes a multiple criteria linear programming (MCLP) method to predict bankruptcy using Korean bankruptcy data after the 1997 financial crisis. The results, of the MCLP approach in our Korean bankruptcy prediction study, show that our method performs as well as traditional multiple discriminant analysis or logit analysis using only financial data. In addition, our model’s overall prediction accuracy is comparable to those of decision tree or support vector machine approaches. However, our results are not generalizable because our data are from a special situation in Korea.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Apr 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off