Ball convergence for an eighth order efficient method under weak conditions in Banach spaces

Ball convergence for an eighth order efficient method under weak conditions in Banach spaces We present a local convergence analysis of an eighth order- iterative method in order to approximate a locally unique solution of an equation in Banach space setting. Earlier studies have used hypotheses up to the fourth derivative although only the first derivative appears in the definition of these methods. In this study we only use the hypothesis on the first derivative. This way we expand the applicability of these methods. Moreover, we provide a radius of convergence, a uniqueness ball and computable error bounds based on Lipschitz constants. Numerical examples computing the radii of the convergence balls as well as examples where earlier results cannot apply to solve equations but our results can apply are also given in this study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png SeMA Journal Springer Journals

Ball convergence for an eighth order efficient method under weak conditions in Banach spaces

Loading next page...
 
/lp/springer_journal/ball-convergence-for-an-eighth-order-efficient-method-under-weak-uvB1SXoP00
Publisher
Springer Milan
Copyright
Copyright © 2016 by Sociedad Española de Matemática Aplicada
Subject
Mathematics; Mathematics, general; Applications of Mathematics
ISSN
2254-3902
eISSN
2281-7875
D.O.I.
10.1007/s40324-016-0098-5
Publisher site
See Article on Publisher Site

Abstract

We present a local convergence analysis of an eighth order- iterative method in order to approximate a locally unique solution of an equation in Banach space setting. Earlier studies have used hypotheses up to the fourth derivative although only the first derivative appears in the definition of these methods. In this study we only use the hypothesis on the first derivative. This way we expand the applicability of these methods. Moreover, we provide a radius of convergence, a uniqueness ball and computable error bounds based on Lipschitz constants. Numerical examples computing the radii of the convergence balls as well as examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

Journal

SeMA JournalSpringer Journals

Published: Nov 14, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off