Ball convergence for an eighth order efficient method under weak conditions in Banach spaces

Ball convergence for an eighth order efficient method under weak conditions in Banach spaces We present a local convergence analysis of an eighth order- iterative method in order to approximate a locally unique solution of an equation in Banach space setting. Earlier studies have used hypotheses up to the fourth derivative although only the first derivative appears in the definition of these methods. In this study we only use the hypothesis on the first derivative. This way we expand the applicability of these methods. Moreover, we provide a radius of convergence, a uniqueness ball and computable error bounds based on Lipschitz constants. Numerical examples computing the radii of the convergence balls as well as examples where earlier results cannot apply to solve equations but our results can apply are also given in this study. SeMA Journal Springer Journals

Ball convergence for an eighth order efficient method under weak conditions in Banach spaces

Loading next page...
Springer Milan
Copyright © 2016 by Sociedad Española de Matemática Aplicada
Mathematics; Mathematics, general; Applications of Mathematics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial