Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France)

Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a... Macrophyte floating roots are considered as hotspots for methylmercury (MeHg) production in aquatic ecosystems through microbial activity. Nevertheless, very little is known about periphyton bacterial communities and mercury (Hg) methylators in such ecological niches. The ability to methylate inorganic Hg is broadly distributed among prokaryotes; however, sulfate-reducers have been reported to be the most important MeHg producers in macrophyte floating roots. In the present work, the periphyton bacterial communities colonizing Ludwigia sp. floating roots were investigated through molecular methods. Among the 244 clones investigated, anaerobic microorganisms associated with the sulfur biogeochemical cycle were identified. Notably, members of the sulfur-oxidizing prokaryotes and the anoxygenic, purple non-sulfur bacteria (Rhodobacteraceae, Comamonadaceae, Rhodocyclaceae, Hyphomicrobiaceae) and the sulfate reducers (Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae) were detected. In addition, 15 sulfate-reducing strains related to the Desulfovibrionaceae family were isolated and their Hg-methylation capacity was tested using a biosensor. The overall results confirmed that Hg methylation is a strain-specific process since the four strains identified as new Hg-methylators were closely related to non-methylating isolates. This study highlights the potential involvement of periphytic bacteria in Hg methylation when favorable environmental conditions are present in such ecological micro-niches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France)

Loading next page...
 
/lp/springer_journal/bacterial-periphytic-communities-related-to-mercury-methylation-within-vhUka4pS7K
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9597-x
Publisher site
See Article on Publisher Site

Abstract

Macrophyte floating roots are considered as hotspots for methylmercury (MeHg) production in aquatic ecosystems through microbial activity. Nevertheless, very little is known about periphyton bacterial communities and mercury (Hg) methylators in such ecological niches. The ability to methylate inorganic Hg is broadly distributed among prokaryotes; however, sulfate-reducers have been reported to be the most important MeHg producers in macrophyte floating roots. In the present work, the periphyton bacterial communities colonizing Ludwigia sp. floating roots were investigated through molecular methods. Among the 244 clones investigated, anaerobic microorganisms associated with the sulfur biogeochemical cycle were identified. Notably, members of the sulfur-oxidizing prokaryotes and the anoxygenic, purple non-sulfur bacteria (Rhodobacteraceae, Comamonadaceae, Rhodocyclaceae, Hyphomicrobiaceae) and the sulfate reducers (Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae) were detected. In addition, 15 sulfate-reducing strains related to the Desulfovibrionaceae family were isolated and their Hg-methylation capacity was tested using a biosensor. The overall results confirmed that Hg methylation is a strain-specific process since the four strains identified as new Hg-methylators were closely related to non-methylating isolates. This study highlights the potential involvement of periphytic bacteria in Hg methylation when favorable environmental conditions are present in such ecological micro-niches.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 30, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off