Bacterial genome evolution in superspecies systems: An approach to the reconstruction of symbiogenesis processes

Bacterial genome evolution in superspecies systems: An approach to the reconstruction of... Bacteria form a broad spectrum of symbioses with eukaryotes. This permits reconstruction of the symbiogenesis processes providing the transformation of free-living microorganisms into cellular organelles. In ecologically (conditionally) obligate symbioses, an increase in the size and complexity of the bacterial genome structure was observed. This was associated with segregation of the regions controlling symbiosis into gene clusters, islands, and plasmids. In genetically (strictly) obligate symbioses, a reduction of “nonsymbiotic” regions of microbial genome occurs, which could begin from genes encoding metabolic and regulatory functions. It is extended towards genes encoding template processes. Conditionally obligate symbioses are characterised by the activation of horizontal gene transfer between various forms of microsymbionts, while for strictly obligate intracellular symbioses an activation of endo-symbiotic gene transfer between microsymbionts and their hosts was detected. The latter is responsible for bacterial transition from the functional (based on gene cross-regulation) to structural (based on recombination) genetic integration with hosts, which later could be followed by the complete assimilation of microbial genomes. In α-proteobacteria this evolutionary pathway could result in the formation of cellular organelles that are deficient in their own genomes but capable of preserving proteomic and cytological traits as a result of the gene-product import synthesized in cytosol (hydrogenosomes and mitosomes). The symbiogenic evolution of cyanobacteria could result in the loss of the plasmids generated from them, while the host maintains a significant part of their genome in nuclear chromosomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Bacterial genome evolution in superspecies systems: An approach to the reconstruction of symbiogenesis processes

Loading next page...
 
/lp/springer_journal/bacterial-genome-evolution-in-superspecies-systems-an-approach-to-the-iECTqIpnD0
Publisher
Springer Journals
Copyright
Copyright © 2015 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795414080043
Publisher site
See Article on Publisher Site

Abstract

Bacteria form a broad spectrum of symbioses with eukaryotes. This permits reconstruction of the symbiogenesis processes providing the transformation of free-living microorganisms into cellular organelles. In ecologically (conditionally) obligate symbioses, an increase in the size and complexity of the bacterial genome structure was observed. This was associated with segregation of the regions controlling symbiosis into gene clusters, islands, and plasmids. In genetically (strictly) obligate symbioses, a reduction of “nonsymbiotic” regions of microbial genome occurs, which could begin from genes encoding metabolic and regulatory functions. It is extended towards genes encoding template processes. Conditionally obligate symbioses are characterised by the activation of horizontal gene transfer between various forms of microsymbionts, while for strictly obligate intracellular symbioses an activation of endo-symbiotic gene transfer between microsymbionts and their hosts was detected. The latter is responsible for bacterial transition from the functional (based on gene cross-regulation) to structural (based on recombination) genetic integration with hosts, which later could be followed by the complete assimilation of microbial genomes. In α-proteobacteria this evolutionary pathway could result in the formation of cellular organelles that are deficient in their own genomes but capable of preserving proteomic and cytological traits as a result of the gene-product import synthesized in cytosol (hydrogenosomes and mitosomes). The symbiogenic evolution of cyanobacteria could result in the loss of the plasmids generated from them, while the host maintains a significant part of their genome in nuclear chromosomes.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Apr 21, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off