Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities

Bacteria from Antarctic environments: diversity and detection of antimicrobial,... Microorganisms dominate most of Antarctic ecosystems and play a crucial role in their functioning. They are called extremophilic microorganisms with unique and versatile metabolic properties with possible biotechnological applications in several areas. The aim of the present study was to identify psychrotolerant microorganisms from Antarctic continent samples and to screen them for antimicrobial effects. Phylogenetic analyses revealed that most isolates were closely related to recognized species, including those recovered previously from Antarctica, which belonged to the major phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria (classes Alpha, Beta, and Gammaproteobacteria). A total of 326 bacterial isolates, distributed in 39 different genera, were recovered and identified based on sequencing of the 16S rRNA gene. The main representative genera were Arthrobacter, Psychrobacter, Pseudoalteromonas, and Rhodococcus. Antimicrobial screening revealed fifteen isolates capable of inhibiting growth of at least one of the indicator strains: Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. One psychrotolerant bacterium, Pseudomonas sp. isolate 99, showed a broad antimicrobial range, in addition to antiproliferative and antiparasitic activity. Overall, the small number of antibiotic-producing isolates obtained and the weakness of their inhibition halos corroborated previous findings suggesting that cold-loving bacteria from Antarctica are not as good as their relatives from mesophilic environments for antimicrobial prospecting. Nonetheless, antiproliferative and antiparasitic results observed are promising and suggest that there is an untapped wealth in Antarctic environments for bioprospecting compounds with pharmaceutical potential application. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polar Biology Springer Journals

Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities

Loading next page...
 
/lp/springer_journal/bacteria-from-antarctic-environments-diversity-and-detection-of-a0mU0RnV53
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Ecology; Oceanography; Microbiology; Plant Sciences; Zoology
ISSN
0722-4060
eISSN
1432-2056
D.O.I.
10.1007/s00300-018-2300-y
Publisher site
See Article on Publisher Site

Abstract

Microorganisms dominate most of Antarctic ecosystems and play a crucial role in their functioning. They are called extremophilic microorganisms with unique and versatile metabolic properties with possible biotechnological applications in several areas. The aim of the present study was to identify psychrotolerant microorganisms from Antarctic continent samples and to screen them for antimicrobial effects. Phylogenetic analyses revealed that most isolates were closely related to recognized species, including those recovered previously from Antarctica, which belonged to the major phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria (classes Alpha, Beta, and Gammaproteobacteria). A total of 326 bacterial isolates, distributed in 39 different genera, were recovered and identified based on sequencing of the 16S rRNA gene. The main representative genera were Arthrobacter, Psychrobacter, Pseudoalteromonas, and Rhodococcus. Antimicrobial screening revealed fifteen isolates capable of inhibiting growth of at least one of the indicator strains: Escherichia coli, Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. One psychrotolerant bacterium, Pseudomonas sp. isolate 99, showed a broad antimicrobial range, in addition to antiproliferative and antiparasitic activity. Overall, the small number of antibiotic-producing isolates obtained and the weakness of their inhibition halos corroborated previous findings suggesting that cold-loving bacteria from Antarctica are not as good as their relatives from mesophilic environments for antimicrobial prospecting. Nonetheless, antiproliferative and antiparasitic results observed are promising and suggest that there is an untapped wealth in Antarctic environments for bioprospecting compounds with pharmaceutical potential application.

Journal

Polar BiologySpringer Journals

Published: Mar 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off