Axial static pressure measurements of water flow in a rectangular microchannel

Axial static pressure measurements of water flow in a rectangular microchannel An experimental investigation of water flow through an aluminum rectangular microchannel with a hydraulic diameter of 169 μm was conducted over a Reynolds number (based upon mean velocity and hydraulic diameter) range from 230 to 4,740. Pressure measurements were simultaneously acquired at eight different axial locations within the channel along with pressure measurements in the inlet and outlet ports. The 27 μm pressure taps were more densely packed near the channel entrance in order to study the developing flow region. The average Poiseuille number for laminar flows was 86.4, which is in excellent agreement with the theoretical value of 86.9. The average critical Reynolds number was found to be 2,370. The limited turbulent friction factor data were in good agreement with the Haaland equation. The inlet to the channel was not well rounded and pressure distributions near the channel entrance show a region of pressure recovery. Entrance length and some minor loss coefficient data were not in agreement with theory, but the cause of these deviations were primarily a function of the inlet geometry and pressure recovery in the microchannel rather than a microscale effect. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Axial static pressure measurements of water flow in a rectangular microchannel

Loading next page...
 
/lp/springer_journal/axial-static-pressure-measurements-of-water-flow-in-a-rectangular-VZb42xtPIO
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-007-0360-9
Publisher site
See Article on Publisher Site

Abstract

An experimental investigation of water flow through an aluminum rectangular microchannel with a hydraulic diameter of 169 μm was conducted over a Reynolds number (based upon mean velocity and hydraulic diameter) range from 230 to 4,740. Pressure measurements were simultaneously acquired at eight different axial locations within the channel along with pressure measurements in the inlet and outlet ports. The 27 μm pressure taps were more densely packed near the channel entrance in order to study the developing flow region. The average Poiseuille number for laminar flows was 86.4, which is in excellent agreement with the theoretical value of 86.9. The average critical Reynolds number was found to be 2,370. The limited turbulent friction factor data were in good agreement with the Haaland equation. The inlet to the channel was not well rounded and pressure distributions near the channel entrance show a region of pressure recovery. Entrance length and some minor loss coefficient data were not in agreement with theory, but the cause of these deviations were primarily a function of the inlet geometry and pressure recovery in the microchannel rather than a microscale effect.

Journal

Experiments in FluidsSpringer Journals

Published: Aug 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off