Avoiding class warfare: managing continuous queries with differentiated classes of service

Avoiding class warfare: managing continuous queries with differentiated classes of service Data stream management systems (DSMSs) offer the most effective solution for processing data streams by efficiently executing continuous queries (CQs) over the incoming data. CQs inherently have different levels of criticality and hence different levels of expected quality of service (QoS) and quality of data (QoD). Adhering to such expected QoS/QoD metrics is even more important in cases of multi-tenant data stream management services. In this work, we propose DILoS, a framework that, through priority-based scheduling and load shedding, supports differentiated QoS and QoD for multiple classes of CQs. Unlike existing works that consider scheduling and load shedding separately, DILoS is a novel unified framework that exploits the synergy between scheduling and load shedding. We also propose ALoMa, a general, adaptive load manager that DILoS is built upon. By its design, ALoMa performs better than the state-of-the-art alternatives in three dimensions: (1) it automatically tunes the headroom factor, (2) it honors the delay target, (3) it is applicable to complex query networks with shared operators. We implemented DILoS and ALoMa in our real DSMS prototype system (AQSIOS) and evaluate their performance for a variety of real and synthetic workloads. Our experimental evaluation of ALoMa verified its clear superiority over the state-of-the-art approaches. Our experimental evaluation of the DILoS framework showed that it (a) allows the scheduler and load shedder to consistently honor CQs’ priorities, (b) significantly increases system capacity utilization by exploiting batch processing, and (c) enables operator sharing among query classes of different priorities while avoiding priority inversion, i.e., a lower-priority class never blocks a higher-priority one. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Avoiding class warfare: managing continuous queries with differentiated classes of service

Loading next page...
 
/lp/springer_journal/avoiding-class-warfare-managing-continuous-queries-with-differentiated-f0T6g2sLVG
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0411-4
Publisher site
See Article on Publisher Site

Abstract

Data stream management systems (DSMSs) offer the most effective solution for processing data streams by efficiently executing continuous queries (CQs) over the incoming data. CQs inherently have different levels of criticality and hence different levels of expected quality of service (QoS) and quality of data (QoD). Adhering to such expected QoS/QoD metrics is even more important in cases of multi-tenant data stream management services. In this work, we propose DILoS, a framework that, through priority-based scheduling and load shedding, supports differentiated QoS and QoD for multiple classes of CQs. Unlike existing works that consider scheduling and load shedding separately, DILoS is a novel unified framework that exploits the synergy between scheduling and load shedding. We also propose ALoMa, a general, adaptive load manager that DILoS is built upon. By its design, ALoMa performs better than the state-of-the-art alternatives in three dimensions: (1) it automatically tunes the headroom factor, (2) it honors the delay target, (3) it is applicable to complex query networks with shared operators. We implemented DILoS and ALoMa in our real DSMS prototype system (AQSIOS) and evaluate their performance for a variety of real and synthetic workloads. Our experimental evaluation of ALoMa verified its clear superiority over the state-of-the-art approaches. Our experimental evaluation of the DILoS framework showed that it (a) allows the scheduler and load shedder to consistently honor CQs’ priorities, (b) significantly increases system capacity utilization by exploiting batch processing, and (c) enables operator sharing among query classes of different priorities while avoiding priority inversion, i.e., a lower-priority class never blocks a higher-priority one.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off