Available forms of nutrients and heavy metals control the distribution of microbial phospholipid fatty acids in sediments of the Three Gorges Reservoir, China

Available forms of nutrients and heavy metals control the distribution of microbial phospholipid... The construction of the Three Gorges Reservoir (TGR) as well as the development of local industry and agriculture not only had tremendous impacts on the environment but also affected human health. Although water, soil, and air in the TGR have been well studied for environmental risk assessment, very little information is available on benthic sediments and microorganisms. In this study, sedimentary samples were collected along the main stream of the TGR to examine microbial phospholipid fatty acids (PLFA) and relevant variables (e.g., nutrients and heavy metals) after the full operation of the TGR. The results showed that there were prominent trends (increase or decrease) of sedimentary PLFAs and properties from downstream to upstream. Bacteria-specific PLFA decreased toward the dam, while fungi-specific PLFA did not show any significant trend. The PLFA ratio of fungi to bacteria (F/B) increased along the mainstream. The total PLFA concentration, which represents the microbial biomass, decreased significantly toward the dam. Upstream and downstream sampling points were clearly distinguished by PLFA ordination in the redundancy analysis (RDA). That finding showed microbial PLFAs to have an obvious distribution pattern (increase or decrease) in the TGR. The PLFA distribution was markedly controlled by nutrients and heavy metals, but nutrients were more important. Moreover, among nutrients, Bio-P, NH4 +-N, NO3 −-N, and DOC were more important than TP, TN, TOC, and pH in controlling PLFA distribution. For heavy metals, Tl, V, Mo, and Ni were more important than Zn, Cu, Cd, and Pb. These findings suggested that Tl, V, Mo, and Ni should not be ignored to guard against their pollution in the TGR, and we should pay attention to them and make them our first priority. This study highlighted that the construction of the TGR changed riverine environments and altered microbial communities in sediments by affecting sedimentary properties. It is a reminder that the microbial ecology of sediment as an indicator should be considered in assessing the eco-risk of the TGR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Available forms of nutrients and heavy metals control the distribution of microbial phospholipid fatty acids in sediments of the Three Gorges Reservoir, China

Loading next page...
 
/lp/springer_journal/available-forms-of-nutrients-and-heavy-metals-control-the-distribution-P1N0JbIqD0
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-0824-2
Publisher site
See Article on Publisher Site

Abstract

The construction of the Three Gorges Reservoir (TGR) as well as the development of local industry and agriculture not only had tremendous impacts on the environment but also affected human health. Although water, soil, and air in the TGR have been well studied for environmental risk assessment, very little information is available on benthic sediments and microorganisms. In this study, sedimentary samples were collected along the main stream of the TGR to examine microbial phospholipid fatty acids (PLFA) and relevant variables (e.g., nutrients and heavy metals) after the full operation of the TGR. The results showed that there were prominent trends (increase or decrease) of sedimentary PLFAs and properties from downstream to upstream. Bacteria-specific PLFA decreased toward the dam, while fungi-specific PLFA did not show any significant trend. The PLFA ratio of fungi to bacteria (F/B) increased along the mainstream. The total PLFA concentration, which represents the microbial biomass, decreased significantly toward the dam. Upstream and downstream sampling points were clearly distinguished by PLFA ordination in the redundancy analysis (RDA). That finding showed microbial PLFAs to have an obvious distribution pattern (increase or decrease) in the TGR. The PLFA distribution was markedly controlled by nutrients and heavy metals, but nutrients were more important. Moreover, among nutrients, Bio-P, NH4 +-N, NO3 −-N, and DOC were more important than TP, TN, TOC, and pH in controlling PLFA distribution. For heavy metals, Tl, V, Mo, and Ni were more important than Zn, Cu, Cd, and Pb. These findings suggested that Tl, V, Mo, and Ni should not be ignored to guard against their pollution in the TGR, and we should pay attention to them and make them our first priority. This study highlighted that the construction of the TGR changed riverine environments and altered microbial communities in sediments by affecting sedimentary properties. It is a reminder that the microbial ecology of sediment as an indicator should be considered in assessing the eco-risk of the TGR.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Dec 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off