Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting

Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting Auxin is important in the development of plant vascular tissues. Reconnection of vascular bundles between scion and stock is a primary aim of grafting, and polar auxin transport greatly affects the formation of a continuous vascular model. The role of auxin in the process of graft-union development was studied by grafting the seedlings of Arabidopsis thaliana (L.) Heynh. DR5:GUS marker plants, which exert the auxinspecific responses. Auxin induced the DR5:GUS expression in the vascular bundles around graft surface and stimulated the formation of multiple vascular bundle reconnections on the third day after grafting (DAG). DR5:GUS expression was delayed for one day in both scion and stock and dramatically declined by the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Vascular bundle reconnection was observed only on the 4th DAG. These results suggest that auxin stimulates the reconnection of the vascular bundles, whereas NPA inhibits it. We studied the role of PIN proteins in graft development by grafting seedlings of PIN:GUS plants. PIN had different expression patterns in the graft process. Expression levels of PIN genes were analyzed by real-time PCR. All PIN genes had the higher expression level at the third DAG. We conclude that auxin stimulates the development of graft unions, and the patterns of expressions of PIN family genes can affect the development of graft-union by controlling the auxin flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Auxin redistribution and shifts in PIN gene expression during Arabidopsis grafting

Loading next page...
 
/lp/springer_journal/auxin-redistribution-and-shifts-in-pin-gene-expression-during-5JuXJMibx7
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144371405015X
Publisher site
See Article on Publisher Site

Abstract

Auxin is important in the development of plant vascular tissues. Reconnection of vascular bundles between scion and stock is a primary aim of grafting, and polar auxin transport greatly affects the formation of a continuous vascular model. The role of auxin in the process of graft-union development was studied by grafting the seedlings of Arabidopsis thaliana (L.) Heynh. DR5:GUS marker plants, which exert the auxinspecific responses. Auxin induced the DR5:GUS expression in the vascular bundles around graft surface and stimulated the formation of multiple vascular bundle reconnections on the third day after grafting (DAG). DR5:GUS expression was delayed for one day in both scion and stock and dramatically declined by the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Vascular bundle reconnection was observed only on the 4th DAG. These results suggest that auxin stimulates the reconnection of the vascular bundles, whereas NPA inhibits it. We studied the role of PIN proteins in graft development by grafting seedlings of PIN:GUS plants. PIN had different expression patterns in the graft process. Expression levels of PIN genes were analyzed by real-time PCR. All PIN genes had the higher expression level at the third DAG. We conclude that auxin stimulates the development of graft unions, and the patterns of expressions of PIN family genes can affect the development of graft-union by controlling the auxin flow.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 21, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off