Auxin abolishes inhibitory effects of methylcyclopropen and amino oxyacetic acid on pollen grain germination, pollen tube growth, and the synthesis of ACC in petunia

Auxin abolishes inhibitory effects of methylcyclopropen and amino oxyacetic acid on pollen grain... As established by us earlier, ethylene behaves as a regulator of germination, development, and growth of male gametophyte during the progamic phase of fertilization. However, the mechanisms of the regulation of these processes remain so far unstudied. It is believed that the main factor providing variety of the ethylene responses is its interaction with other phytohormones. According to our working hypothesis, ethylene controls germination of pollen grains (PGs) and growth of pollen tubes (PTs) by interacting with auxin, which, as the available data indicate, is likely a key regulator of plant cell polarization and morphogenesis and one of the factors modulating the biosynthesis of ethylene at the level of ACC-synthase gene expression. In the present work, on germinating in vitro male gametophyte and the pollen-stigma system for petunia (Petunia hybrida L.) effects of phytohormones (ethylene and IAA) and known blockers repressing ethylene reception (1-methylcyclopropene, 1-MCP), the synthesis of ACC (amino oxyacetic acid, AOA) and transport IAA (triyodbenzoynaya acid, TYBA) on PGs germination, PTs growth and the synthesis of ACC were investigated. According to the data obtained, exogenous ethylene and IAA stimulated both PGs germination and PTs growth. 1-MCP and TYBA completely inhibited the first process, whereas IAA abolished the inhibitory action of 1-MCP and AOA on both the above processes. Etrel only partially weakened the inhibitory effect of TYBA. Examination of ACC synthesis modulation with AOA showed that IAA does not affect the level of ACC in germinating in vitro male gametophyte and nonpollinated stigmas, while this phytohormone insignificantly raised the level of ACC and abolished the inhibitory effect of AOA on its synthesis in the pollenstigma system. Pollination of stigmas with the pollen preliminarily treated with 1-MCP led to 2.5-fold decline in both the rate of PT growth and the level of ACC. At the same time, IAA abolished the inhibitory action of 1-MCP recovering the synthesis of ACC and growth of PTs to the control values. All these results, taken together, provide evidence for the interaction of the signal transduction pathways of ethylene and auxin at the level of ACC biosynthesis in the course of germination and growth of petunia male gametophyte during the progamic phase of fertilization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Auxin abolishes inhibitory effects of methylcyclopropen and amino oxyacetic acid on pollen grain germination, pollen tube growth, and the synthesis of ACC in petunia

Loading next page...
 
/lp/springer_journal/auxin-abolishes-inhibitory-effects-of-methylcyclopropen-and-amino-Apfxk2lvDn
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360417020059
Publisher site
See Article on Publisher Site

Abstract

As established by us earlier, ethylene behaves as a regulator of germination, development, and growth of male gametophyte during the progamic phase of fertilization. However, the mechanisms of the regulation of these processes remain so far unstudied. It is believed that the main factor providing variety of the ethylene responses is its interaction with other phytohormones. According to our working hypothesis, ethylene controls germination of pollen grains (PGs) and growth of pollen tubes (PTs) by interacting with auxin, which, as the available data indicate, is likely a key regulator of plant cell polarization and morphogenesis and one of the factors modulating the biosynthesis of ethylene at the level of ACC-synthase gene expression. In the present work, on germinating in vitro male gametophyte and the pollen-stigma system for petunia (Petunia hybrida L.) effects of phytohormones (ethylene and IAA) and known blockers repressing ethylene reception (1-methylcyclopropene, 1-MCP), the synthesis of ACC (amino oxyacetic acid, AOA) and transport IAA (triyodbenzoynaya acid, TYBA) on PGs germination, PTs growth and the synthesis of ACC were investigated. According to the data obtained, exogenous ethylene and IAA stimulated both PGs germination and PTs growth. 1-MCP and TYBA completely inhibited the first process, whereas IAA abolished the inhibitory action of 1-MCP and AOA on both the above processes. Etrel only partially weakened the inhibitory effect of TYBA. Examination of ACC synthesis modulation with AOA showed that IAA does not affect the level of ACC in germinating in vitro male gametophyte and nonpollinated stigmas, while this phytohormone insignificantly raised the level of ACC and abolished the inhibitory effect of AOA on its synthesis in the pollenstigma system. Pollination of stigmas with the pollen preliminarily treated with 1-MCP led to 2.5-fold decline in both the rate of PT growth and the level of ACC. At the same time, IAA abolished the inhibitory action of 1-MCP recovering the synthesis of ACC and growth of PTs to the control values. All these results, taken together, provide evidence for the interaction of the signal transduction pathways of ethylene and auxin at the level of ACC biosynthesis in the course of germination and growth of petunia male gametophyte during the progamic phase of fertilization.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Apr 5, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off