Autoplaque Formation in a Pseudomonas fluorescensStrain: Phagelike Particles and Transactivation of the Defective Phage

Autoplaque Formation in a Pseudomonas fluorescensStrain: Phagelike Particles and Transactivation... Natural bacteriophages ofPseudomonas fluorescensare rare and its temperate phages have not been described so far. In search for these phages, we have found that one of the P. fluorescensstrains forms numerous small transparent autoplaques of different size and shape, which contained material reproducible on the same strains. When centrifuged in a cesium chloride gradient, this material yielded a band in the density zone of about 1.3 g/cm3, where protein components or bacteriophages with a relatively low content of nucleic acid are usually located. In the band material, electron microscopy revealed phagelike particles with empty and mostly undamaged heads and tails carrying in their distal region a formation resembling contracted sheath. DNA isolated from the preparation consisted of two components: a distinct 54-kb fragment, and a diffuse fragment ranging in size from 20 to 9.5 kb. Treatment of the large DNA fragment with various endonucleases yielded 42.2- and 29.5-kb fragments (on average for different endonucleases); whereas the same treatment of the diffuse fragment yielded two- to three distinct fragments with the overall molecular sizes of 8.9 and 6.2 kb (for different nucleases). We have suggested that cells harbor two different genetic elements whose interaction results in the autoplaque appearance and in the formation of negative colonies after infection with the autoplaque material. One of the two elements displays properties of a defective prophage with disturbed DNA synthesis and assembly, whereas the other exhibits the properties of a transposable phage. After complementation or some other interaction between these elements (transactivation, prophage induction caused by repressor inactivation), a bulk of defective phage particles devoid of DNA and a few DNA-containing particles were produced. It remains unclear whether both DNA types are contained in the same or different particles. The phage (or a system of elements) referred to as PT3 is noninducible. The phage mutants forming larger negative colonies (NCs) were also revealed. Some of bacterial mutants resistant to PT3 infection produce the mutant phage with small and turbid NCs. PT3 produces no NCs on the lawns of other strains of the same or other pseudomonad species. This is the first case of describing a natural temperate bacteriophage in P. fluorescens.The two different elements of this phage may represent the same genome of the defective prophage divided into two portions within a bacterial chromosome, each of which is capable of packaging into the phage head. Russian Journal of Genetics Springer Journals

Autoplaque Formation in a Pseudomonas fluorescensStrain: Phagelike Particles and Transactivation of the Defective Phage

Loading next page...
Kluwer Academic Publishers-Plenum Publishers
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Biomedicine; Human Genetics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial