Autonomous spatially adaptive sampling in experiments based on curvature, statistical error and sample spacing with applications in LDA measurements

Autonomous spatially adaptive sampling in experiments based on curvature, statistical error and... Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of the signal content. For signals with inhomogeneous information content, this leads to unnecessarily dense sampling in regions of low interest or insufficient sample density at important features, or both. A new adaptive sampling technique is presented directing sample collection in proportion to local information content, capturing adequately the short-period features while sparsely sampling less dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. Numerical assessment has indicated a reduction in the number of samples required to achieve a predefined uncertainty level overall while improving local accuracy for important features. The potential of the proposed method has been further demonstrated on the basis of Laser Doppler Anemometry experiments examining the wake behind a NACA0012 airfoil and the boundary layer characterisation of a flat plate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Autonomous spatially adaptive sampling in experiments based on curvature, statistical error and sample spacing with applications in LDA measurements

Loading next page...
 
/lp/springer_journal/autonomous-spatially-adaptive-sampling-in-experiments-based-on-fKd4U4wlNx
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1986-7
Publisher site
See Article on Publisher Site

Abstract

Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of the signal content. For signals with inhomogeneous information content, this leads to unnecessarily dense sampling in regions of low interest or insufficient sample density at important features, or both. A new adaptive sampling technique is presented directing sample collection in proportion to local information content, capturing adequately the short-period features while sparsely sampling less dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. Numerical assessment has indicated a reduction in the number of samples required to achieve a predefined uncertainty level overall while improving local accuracy for important features. The potential of the proposed method has been further demonstrated on the basis of Laser Doppler Anemometry experiments examining the wake behind a NACA0012 airfoil and the boundary layer characterisation of a flat plate.

Journal

Experiments in FluidsSpringer Journals

Published: May 27, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off