Autonomic query parallelization using non-dedicated computers: an evaluation of adaptivity options

Autonomic query parallelization using non-dedicated computers: an evaluation of adaptivity options Writing parallel programs that can take advantage of non-dedicated processors is much more difficult than writing such programs for networks of dedicated processors. In a non-dedicated environment such programs must use autonomic techniques to respond to the unpredictable load fluctuations that prevail in the computational environment. In adaptive query processing (AQP), several techniques have been proposed for dynamically redistributing processor load assignments throughout a computation to take account of varying resource capabilities, but we know of no previous study that compares their performance. This paper presents a simulation-based evaluation of these autonomic parallelization techniques in a uniform environment and compares how well they improve the performance of the computation. Four published strategies are compared with a new algorithm that seeks to overcome some weaknesses identified in the existing approaches. In addition, we explore the use of techniques from online algorithms to provide a firm foundation for determining when to adapt in two of the existing algorithms. The evaluations identify situations in which each strategy may be used effectively and in which it should be avoided. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Autonomic query parallelization using non-dedicated computers: an evaluation of adaptivity options

Loading next page...
 
/lp/springer_journal/autonomic-query-parallelization-using-non-dedicated-computers-an-1wY0Cr0cEJ
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0090-x
Publisher site
See Article on Publisher Site

Abstract

Writing parallel programs that can take advantage of non-dedicated processors is much more difficult than writing such programs for networks of dedicated processors. In a non-dedicated environment such programs must use autonomic techniques to respond to the unpredictable load fluctuations that prevail in the computational environment. In adaptive query processing (AQP), several techniques have been proposed for dynamically redistributing processor load assignments throughout a computation to take account of varying resource capabilities, but we know of no previous study that compares their performance. This paper presents a simulation-based evaluation of these autonomic parallelization techniques in a uniform environment and compares how well they improve the performance of the computation. Four published strategies are compared with a new algorithm that seeks to overcome some weaknesses identified in the existing approaches. In addition, we explore the use of techniques from online algorithms to provide a firm foundation for determining when to adapt in two of the existing algorithms. The evaluations identify situations in which each strategy may be used effectively and in which it should be avoided.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2009

References

  • Parallel database systems: the future of high performance database systems
    DeWitt, D.J.
  • Iterators, schedulers, and distributed memory parallelism
    Graefe, G.
  • The state of the art in distributed query processing
    Kossmann, D.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off