Automating the database schema evolution process

Automating the database schema evolution process Supporting database schema evolution represents a long-standing challenge of practical and theoretical importance for modern information systems. In this paper, we describe techniques and systems for automating the critical tasks of migrating the database and rewriting the legacy applications. In addition to labor saving, the benefits delivered by these advances are many and include reliable prediction of outcome, minimization of downtime, system-produced documentation, and support for archiving, historical queries, and provenance. The PRISM/PRISM++ system delivers these benefits, by solving the difficult problem of automating the migration of databases and the rewriting of queries and updates. In this paper, we present the PRISM/PRISM++ system and the novel technology that made it possible. In particular, we focus on the difficult and previously unsolved problem of supporting legacy queries and updates under schema and integrity constraints evolution. The PRISM/PRISM++ approach consists in providing the users with a set of SQL-based Schema Modification Operators (SMOs), which describe how the tables in the old schema are modified into those in the new schema. In order to support updates, SMOs are extended with integrity constraints modification operators. By using recent results on schema mapping, the paper (i) characterizes the impact on integrity constraints of structural schema changes, (ii) devises representations that enable the rewriting of updates, and (iii) develop a unified approach for query and update rewriting under constraints. We complement the system with two novel tools: the first automatically collects and provides statistics on schema evolution histories, whereas the second derives equivalent sequences of SMOs from the migration scripts that were used for schema upgrades. These tools were used to produce an extensive testbed containing 15 evolution histories of scientific databases and web information systems, providing over 100 years of aggregate evolution histories and almost 2,000 schema evolution steps. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Automating the database schema evolution process

Loading next page...
 
/lp/springer_journal/automating-the-database-schema-evolution-process-7xwKn9ZfEg
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-012-0302-x
Publisher site
See Article on Publisher Site

Abstract

Supporting database schema evolution represents a long-standing challenge of practical and theoretical importance for modern information systems. In this paper, we describe techniques and systems for automating the critical tasks of migrating the database and rewriting the legacy applications. In addition to labor saving, the benefits delivered by these advances are many and include reliable prediction of outcome, minimization of downtime, system-produced documentation, and support for archiving, historical queries, and provenance. The PRISM/PRISM++ system delivers these benefits, by solving the difficult problem of automating the migration of databases and the rewriting of queries and updates. In this paper, we present the PRISM/PRISM++ system and the novel technology that made it possible. In particular, we focus on the difficult and previously unsolved problem of supporting legacy queries and updates under schema and integrity constraints evolution. The PRISM/PRISM++ approach consists in providing the users with a set of SQL-based Schema Modification Operators (SMOs), which describe how the tables in the old schema are modified into those in the new schema. In order to support updates, SMOs are extended with integrity constraints modification operators. By using recent results on schema mapping, the paper (i) characterizes the impact on integrity constraints of structural schema changes, (ii) devises representations that enable the rewriting of updates, and (iii) develop a unified approach for query and update rewriting under constraints. We complement the system with two novel tools: the first automatically collects and provides statistics on schema evolution histories, whereas the second derives equivalent sequences of SMOs from the migration scripts that were used for schema upgrades. These tools were used to produce an extensive testbed containing 15 evolution histories of scientific databases and web information systems, providing over 100 years of aggregate evolution histories and almost 2,000 schema evolution steps.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off