Automatic translation of quantum circuits to optimized one-way quantum computation patterns

Automatic translation of quantum circuits to optimized one-way quantum computation patterns One-way quantum computation (1WQC) is a model of universal quantum computations in which a specific highly entangled state called a cluster state (or graph state) allows for quantum computation by only single-qubit measurements. The needed computations in this model are organized as measurement patterns. Previously, an automatic approach to extract a 1WQC pattern from a quantum circuit has been proposed. It takes a quantum circuit consisting of CZ and $$J(\alpha )$$ J ( α ) gates and translates it into an optimized 1WQC pattern. However, the quantum synthesis algorithms usually decompose circuits using a library containing CNOT and any single-qubit gates. In this paper, we show how this approach can be modified in a way that it can take a circuit consisting of CNOT and any single-qubit gates to produce an optimized 1WQC pattern. The single-qubit gates are first automatically $$J$$ J -decomposed and then added to the measurement patterns. Moreover, a new optimization technique is proposed by presenting some algorithms to add Pauli gates to the measurement patterns directly, i.e., without their $$J$$ J -decomposition which leads to more compact patterns for these gates. Using these algorithms, an improved approach for adding single-qubit gates to measurement patterns is proposed. The optimized pattern of CNOT gates is directly added to the measurement patterns. Experimental results show that the proposed approach can efficiently produce optimized patterns for quantum circuits and that adding CNOT gates directly to the measurement patterns decreases the translation runtime. Quantum Information Processing Springer Journals

Automatic translation of quantum circuits to optimized one-way quantum computation patterns

Loading next page...
Springer US
Copyright © 2014 by Springer Science+Business Media New York
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial