Automatic Generation of Numerical Redundancies for Non-Linear Constraint Solving

Automatic Generation of Numerical Redundancies for Non-Linear Constraint Solving In this paper we present a framework for the cooperation of symbolic and propagation-based numerical solvers over the real numbers. This cooperation is expressed in terms of fixed points of closure operators over a complete lattice of constraint systems. In a second part we instantiate this framework to a particular cooperation scheme, where propagation is associated to pruning operators implementing interval algorithms enclosing the possible solutions of constraint systems, whereas symbolic methods are mainly devoted to generate redundant constraints. When carefully chosen, it is well known that the addition of redundant constraint drastically improve the performances of systems based on local consistency (e.g. Prolog IV or Newton). We propose here a method which computes sets of redundant polynomials called partial Gröbner bases and show on some benchmarks the advantages of such computations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Automatic Generation of Numerical Redundancies for Non-Linear Constraint Solving

Loading next page...
 
/lp/springer_journal/automatic-generation-of-numerical-redundancies-for-non-linear-coJXukH6BC
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/A:1009943413814
Publisher site
See Article on Publisher Site

Abstract

In this paper we present a framework for the cooperation of symbolic and propagation-based numerical solvers over the real numbers. This cooperation is expressed in terms of fixed points of closure operators over a complete lattice of constraint systems. In a second part we instantiate this framework to a particular cooperation scheme, where propagation is associated to pruning operators implementing interval algorithms enclosing the possible solutions of constraint systems, whereas symbolic methods are mainly devoted to generate redundant constraints. When carefully chosen, it is well known that the addition of redundant constraint drastically improve the performances of systems based on local consistency (e.g. Prolog IV or Newton). We propose here a method which computes sets of redundant polynomials called partial Gröbner bases and show on some benchmarks the advantages of such computations.

Journal

Reliable ComputingSpringer Journals

Published: Oct 14, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off