Automated selection of r for the r largest order statistics approach with adjustment for sequential testing

Automated selection of r for the r largest order statistics approach with adjustment for... The r largest order statistics approach is widely used in extreme value analysis because it may use more information from the data than just the block maxima. In practice, the choice of r is critical. If r is too large, bias can occur; if too small, the variance of the estimator can be high. The limiting distribution of the r largest order statistics, denoted by GEV $$_r$$ r , extends that of the block maxima. Two specification tests are proposed to select r sequentially. The first is a score test for the GEV $$_r$$ r distribution. Due to the special characteristics of the GEV $$_r$$ r distribution, the classical chi-square asymptotics cannot be used. The simplest approach is to use the parametric bootstrap, which is straightforward to implement but computationally expensive. An alternative fast weighted bootstrap or multiplier procedure is developed for computational efficiency. The second test uses the difference in estimated entropy between the GEV $$_r$$ r and GEV $$_{r-1}$$ r - 1 models, applied to the r largest order statistics and the $$r-1$$ r - 1 largest order statistics, respectively. The asymptotic distribution of the difference statistic is derived. In a large scale simulation study, both tests held their size and had substantial power to detect various misspecification schemes. A new approach to address the issue of multiple, sequential hypotheses testing is adapted to this setting to control the false discovery rate or familywise error rate. The utility of the procedures is demonstrated with extreme sea level and precipitation data. Statistics and Computing Springer Journals

Automated selection of r for the r largest order statistics approach with adjustment for sequential testing

Loading next page...
Springer US
Copyright © 2016 by The Author(s)
Statistics; Statistics and Computing/Statistics Programs; Artificial Intelligence (incl. Robotics); Statistical Theory and Methods; Probability and Statistics in Computer Science
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial