Automated selection of r for the r largest order statistics approach with adjustment for sequential testing

Automated selection of r for the r largest order statistics approach with adjustment for... The r largest order statistics approach is widely used in extreme value analysis because it may use more information from the data than just the block maxima. In practice, the choice of r is critical. If r is too large, bias can occur; if too small, the variance of the estimator can be high. The limiting distribution of the r largest order statistics, denoted by GEV $$_r$$ r , extends that of the block maxima. Two specification tests are proposed to select r sequentially. The first is a score test for the GEV $$_r$$ r distribution. Due to the special characteristics of the GEV $$_r$$ r distribution, the classical chi-square asymptotics cannot be used. The simplest approach is to use the parametric bootstrap, which is straightforward to implement but computationally expensive. An alternative fast weighted bootstrap or multiplier procedure is developed for computational efficiency. The second test uses the difference in estimated entropy between the GEV $$_r$$ r and GEV $$_{r-1}$$ r - 1 models, applied to the r largest order statistics and the $$r-1$$ r - 1 largest order statistics, respectively. The asymptotic distribution of the difference statistic is derived. In a large scale simulation study, both tests held their size and had substantial power to detect various misspecification schemes. A new approach to address the issue of multiple, sequential hypotheses testing is adapted to this setting to control the false discovery rate or familywise error rate. The utility of the procedures is demonstrated with extreme sea level and precipitation data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Statistics and Computing Springer Journals

Automated selection of r for the r largest order statistics approach with adjustment for sequential testing

Loading next page...
 
/lp/springer_journal/automated-selection-of-r-for-the-r-largest-order-statistics-approach-gcWtydHJBp
Publisher
Springer US
Copyright
Copyright © 2016 by The Author(s)
Subject
Statistics; Statistics and Computing/Statistics Programs; Artificial Intelligence (incl. Robotics); Statistical Theory and Methods; Probability and Statistics in Computer Science
ISSN
0960-3174
eISSN
1573-1375
D.O.I.
10.1007/s11222-016-9697-3
Publisher site
See Article on Publisher Site

Abstract

The r largest order statistics approach is widely used in extreme value analysis because it may use more information from the data than just the block maxima. In practice, the choice of r is critical. If r is too large, bias can occur; if too small, the variance of the estimator can be high. The limiting distribution of the r largest order statistics, denoted by GEV $$_r$$ r , extends that of the block maxima. Two specification tests are proposed to select r sequentially. The first is a score test for the GEV $$_r$$ r distribution. Due to the special characteristics of the GEV $$_r$$ r distribution, the classical chi-square asymptotics cannot be used. The simplest approach is to use the parametric bootstrap, which is straightforward to implement but computationally expensive. An alternative fast weighted bootstrap or multiplier procedure is developed for computational efficiency. The second test uses the difference in estimated entropy between the GEV $$_r$$ r and GEV $$_{r-1}$$ r - 1 models, applied to the r largest order statistics and the $$r-1$$ r - 1 largest order statistics, respectively. The asymptotic distribution of the difference statistic is derived. In a large scale simulation study, both tests held their size and had substantial power to detect various misspecification schemes. A new approach to address the issue of multiple, sequential hypotheses testing is adapted to this setting to control the false discovery rate or familywise error rate. The utility of the procedures is demonstrated with extreme sea level and precipitation data.

Journal

Statistics and ComputingSpringer Journals

Published: Oct 5, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off