Access the full text.
Sign up today, get DeepDyve free for 14 days.
This work describes the automated search for optimal electrode locations that will improve reconstructions of a 2D electrical resistivity tomography problem within a meta inverse framework. The meta inverse framework was incorporated into a finite integration forward solver developed for simulating the measurement data, and into an inverse solver developed for reconstructing the resistivity distribution within the subsurface. The meta inverse framework solver then searched to find optimal electrode locations at which best reconstructions of the resistivity distribution within the subsurface could be obtained. The numerical results obtained from applying the forward, inverse and meta inverse solvers to search for resistance anomalies in an electrical resistivity tomography problem are presented. The results show that these solvers are successful for simulations, reconstructions, and for determining the optimal electrode locations at which the best reconstruction of the resistivity distribution can be obtained.
Modeling Earth Systems and Environment – Springer Journals
Published: May 28, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.