Automated mask generation for PIV image analysis based on pixel intensity statistics

Automated mask generation for PIV image analysis based on pixel intensity statistics The measurement of displacements near the vicinity of surfaces involves advanced PIV algorithms requiring accurate knowledge of object boundaries. These data typically come in the form of a logical mask, generated manually or through automatic algorithms. The automatic detection of masks usually necessitates special features or reference points such as bright lines, high contrast objects, and sufficiently observable coherence between pixels. These are, however, not always present in experimental images necessitating a more robust and general approach. In this work, the authors propose a novel method for the automatic detection of static image regions which do not contain relevant information for the estimation of particle image displacements and can consequently be excluded or masked out. The method does not require any a priori knowledge of the static objects (i.e., contrast, brightness, or strong features) as it exploits statistical information from multiple PIV images. Based on the observation that the temporal variation in light intensity follows a completely different distribution for flow regions and object regions, the method utilizes a normality test and an automatic thresholding method on the retrieved probability to identify regions to be masked. The method is assessed through a Monte Carlo simulation with synthetic images and its performance under realistic imaging conditions is proven based on three experimental test cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Automated mask generation for PIV image analysis based on pixel intensity statistics

Loading next page...
 
/lp/springer_journal/automated-mask-generation-for-piv-image-analysis-based-on-pixel-hSWuFatsvq
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-017-2357-3
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial